\(5^{2n+2}\)-24n-25\(⋮\)576

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

Chứng minh:\(C_n=7.2^{2n-2}+3^{2n-1}⋮5\)(1)

Chứng minh quy nạp theo n

+) Với n=1 

Ta có: \(C_0=7.2^0+3^1=10⋮5\)

=> (1) đúng

+) G/s (1) đúng với n

nghĩa là: \(C_n=7.2^{2n-2}+3^{2n-1}⋮5\)

Ta chứng minh (1) đúng với n+1

 \(C_{n+1}=7.2^{2\left(n+1\right)-2}+3^{2\left(n+1\right)-1}=7.2^{2n-2}.4+3^{2n-1}.9\)

\(=5.7.2^{2n-2}-7.2^{2n-2}+10.3^{2n-1}-3^{2n-1}\)

\(=5.7.2^{2n-2}+10.3^{2n-1}-\left(7.2^{2n-2}+3^{2n-1}\right)⋮5\)

=> (1) đúng

Vậy (1) đúng với mọi n thuộc N*

23 tháng 9 2017

Ta xét :

\(5^{61}+25^{31}+125^{21}\)

\(=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)

\(=5^{61}+5^{62}+5^{63}\)

\(=5^{61}\left(1+5+25\right)\)

\(=5^{61}.31\)

Vì \(31⋮31\)nên \(5^{61}.31⋮31\)

\(\Rightarrow5^{61}+25^{31}+125^{21}⋮31\)

\(\RightarrowĐPCM\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

c: \(1^3+7^3+3^3+5^3\)

\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)

\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)

7 tháng 9 2019

a) Có: \(4^{51}+2^{104}+4^{53}\\ =4^{51}+\left(2^2\right)^{52}+4^{53}\\ =4^{51}+4^{52}+4^{53}\\ =4^{51}\left(1+4+4^2\right)\\ =4^{51}\cdot21⋮21\left(đpcm\right)\)

b) Có: \(125^{10}+5^{31}+25^{16}\\ =\left(5^3\right)^{10}+5^{31}+\left(5^2\right)^{16}\\ =5^{30}+5^{31}+5^{32}\\ =5^{30}\left(1+5+5^2\right)\\ =5^{30}\cdot31⋮31\left(đpcm\right)\)

c) Có: \(2^{25}+4^{13}+8^9\\ =2^{25}+\left(2^2\right)^{13}+\left(2^3\right)^9\\ =2^{25}+2^{26}+2^{27}\\ =2^{23}\left(2^2+2^3+2^4\right)\\ =2^{23}\cdot28⋮28\left(đpcm\right)\)

7 tháng 9 2019

đpcm là gì vậy bạn mình ko hiểu

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn