Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:Tìm x biết
(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
Nè, bài này mình chỉ làm được hai câu a,b thoi nha
a) Chứng minh: 432 + 43.17 chia hết cho 16
432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60
b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z
n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)
⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6
\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]=\left[\left(n^2+2n\right)\left(n+1\right)\right]=\left[n\left(n+2\right)\left(n+1\right)\right]\)
ta có n(n+1)(n+2) là 3 số tự nhiên liên tiếp mà 3 số tự nhiên liên tiếp luôn chia hết cho 6
Ta có : \(x^n-1⋮x-1\)
\(x^{n+1}-1⋮x-1\)
=> \(\left(x^n-1\right)\left(x^{n+1}-1\right)⋮\left(x-1\right)^2\)(1)
Do n; n+1 là 2 số tự nhiên liên tiếp => 1 trong 2 số chia hết cho 2
+)Th1: n chia hết cho 2 hay n chẵn => \(x^n-1⋮x^2-1\) hay \(⋮x+1\)(2)
+)Th2: n+1 chia hết cho 2 hay n+2 chẵn.CM như trên
Mà \(x+1\), \(\left(x-1\right)^2\) ko có nhân tử chung. Từ (1),(2) suy ra \(\left(x^n-1\right)\left(x^{n+1}-1\right)⋮\left(x-1\right)^2\)\(\left(x+1\right)\)(đpcm)
Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2=n^2+6n+9-n^2+2n-1\)
\(=8n+8=8.\left(n+1\right)⋮8\)
Vậy \(\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
2(139+239+...+n39)
=2(1+2+3+...+n)(138-2.137+3.137-...+n38) (nhị thức newton)
=2{[(n+1)n]/2}(138-2+3-...+n38)
=n(n+1)(138-2+3-...+n38)
=(n2+n)(1-2+3-...+n38) chia hết cho(n2+n)