Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{5}{10}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{4}{10}=\frac{2}{5}\left(1\right)\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{9}=\frac{8}{9}\left(2\right)\)
Từ ( 1 ) , ( 2 ) => ĐPCM
Chúc bạn học tốt !!!
Đề sai bạn nhé :
Đề đúng :
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
CM : \(\frac{2}{5}< A< \frac{8}{9}\)
ta có A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
= \(1-\frac{1}{9}\)
= \(\frac{8}{9}\)
suy ra A < \(\frac{8}{9}\)
ta có A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)j> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
= \(\frac{1}{2}-\frac{1}{10}\)
= \(\frac{2}{5}\)
suy ra A >\(\frac{2}{5}\)
2. \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)
\(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2}{9}\)
\(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{2}{9}\right)\)
\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{2}{9}:2\)
\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=17\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)
A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
A < \(1-\frac{1}{9}\)
A < \(\frac{8}{9}\)
A > \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
A > \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
A > \(\frac{1}{2}-\frac{1}{10}\)
A > \(\frac{2}{5}\)
KL: \(\frac{2}{5}\)< A < \(\frac{8}{9}\) (đpcm)
heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
mk bít làm nhưng dài lắm phải đi ăn cơm rùi