\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2015

a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:

m2+1>=2m(1)

n2+1>=2n (2)

Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)

b/ Ta có: (a-b)2>= 0

<=> a+b2-2ab>=0

<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)

<=> (a+b)2>= 4ab

<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0) 

<=> (a+b)/ab>= 4/(a+b) (3)

Mà: 1/a+1/b=(a+b)/ab (4)

Từ (3) và (4)=> 1/a+1/b>=4/(a+b)

<=> (a+b)(1/a+1/b)>=4 (đpcm)

 

5 tháng 4 2015

cộng 2 vế với 4 ab , nhầm ^^

25 tháng 4 2019

Áp dụng bđt bunhiacopski cho 3 số ta có

\(\left(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\right)^2\le\left(a^2+b^2+c^2\right)\left(1-a^2+1-b^2+1-c^2\right)\Leftrightarrow\frac{9}{4}\le\left(a^2+b^2+c^2\right)\left[3-\left(a^2+b^2+c^2\right)\right]\)(1)

Đặt \(a^2+b^2+c^2=k\)

Vậy (1)\(\Leftrightarrow\frac{9}{4}\le k\left(3-k\right)\Leftrightarrow\frac{9}{4}\le3k-k^2\Leftrightarrow k^2-3k+\frac{9}{4}\le0\Leftrightarrow\left(k-\frac{3}{2}\right)^2\le0\)

\(\left(k-\frac{3}{2}\right)^2\ge0\)

Suy ra \(\left(k-\frac{3}{2}\right)^2=0\Leftrightarrow k-\frac{3}{2}=0\Leftrightarrow k=\frac{3}{2}\)

Vậy \(a^2+b^2+c^2=\frac{3}{2}\)

NV
4 tháng 6 2019

\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\)

\(A=2+x+\frac{1}{2x}+y+\frac{1}{2y}+\frac{x}{y}+\frac{y}{x}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(A\ge2+2\sqrt{\frac{x}{2x}}+2\sqrt{\frac{y}{2y}}+2\sqrt{\frac{xy}{yx}}+\frac{4}{2\left(x+y\right)}=4+2\sqrt{2}+\frac{2}{x+y}\)

\(A\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(x^2+y^2\right)}}=4+3\sqrt{2}\)

\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)

20 tháng 10 2015

tớ viết lộn chỗ kia \(\left(\sqrt{2}.a.\frac{1}{\sqrt{2}}+b.1\right)^2\) thêm b.1 vô nka triều :D

20 tháng 10 2015

Cậu ta lúc nào cũng câu hỏi tương tự

11 tháng 11 2018

Câu 1

t8-t2\(\frac{1}{2}\)=t8 - t4\(\frac{1}{4}\) + t4-t2+\(\frac{1}{4}\) = (t4 -\(\frac{1}{2}\) )2 + (t2-\(\frac{1}{2}\))2 luôn lớn hơn không do t4-1/2 khác t2-1/2 nên cả hai không thể đồng thời bằng 0

Câu 2:

\(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{6bc+3ac+2ab}{6abc}=0\)

=> 6bc+3ac+2ab=0

Có a+2b+3c=1=> (a+2b+3c)2=0=>a2+4b2+9c2+2(6bc+3ac+2ab)=1

=> a2+4b2+9c2 =1

11 tháng 6 2015

2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2

Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5

=> M \(\ge\) 5x5 - 5x5 + 2 = 2

Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1

11 tháng 6 2015

\(ab=\frac{1}{c};c=\frac{1}{ab}\)

\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)

\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)

\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)

\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)

\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)

\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

Do biểu thức ban đầu dương nên ta có đpcm