K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

Đồ ngu! 4 mà lớn hơn 5!

1 tháng 3 2016

duyet minh di ban 

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

18 tháng 7 2015

4:3=tứ chia tam=tám chia tư=2 vậy 4 :3=2

18 tháng 7 2015

tứ chia tam là tám chia tư: 8 : 4= 2

24 tháng 2 2018

fwewefew

18 tháng 10 2018

ta có quy ước a^0=1

vậy ta có :

1^0=1

2^0=1

<=>1^0=2^0 <=>1=2

hok tốt 

29 tháng 8 2015

Trong toán học xảy ra 3 trường hợp :

Lớn hơn

Nhỏ hơn 

Bằng nhau

* Lớn hơn khi : STN có nhiều chữ số hơn thì lớn hơn

                       STN có số chữ số bằng nhau thì so sánh từ trái sang phải

 * Nhỏ hơn khi : STN có ít chữ số hơn thì nhỏ hơn

                        STN có các chữ số bằng nhau thì so sánh từ trái sang phải

* Bằng nhau khi : Tất cả các STN hai số dùng so sánh như nhau và bằng chữ số với nhau !

9 tháng 11 2017

con lạy cụ tổ

25 tháng 1 2018

Nhìn vào cũng biết

7 tháng 2 2016

gọi 3 phân số đó là
1/a; 1/b; 1/c
vậy ta có: 1/a + 1/b +1/c = 4/n
suy ra n(ab+bc+ca)=4abc (1)
bài toán trên trở thành chứng minh phương trình (1) luôn tồn tại 1cặp nghiệm nguyên(a,b,c)

7 tháng 2 2016

Mình có lời giải này, nếu có chỗ nào sai thì các bạn góp ý nhé:
Nếu n = 3k. Khi đó:

\frac{4}{n} \ = \ \frac{1}{n} \ + \ \frac{3}{n} \ = \ \frac{1}{n+1} \ + \ \frac{1}{n (n+1)} \ + \ \frac{3}{n} \ = \ \frac{1}{3k+1} \ + \ \frac{1}{3k(3k+1)} \ + \ \frac{1}{k}

Nếu n = 3k + 2. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n+1} \ + \ \frac{3}{n(n+1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k+1} \ + \ \frac{1}{(3k+2)(k+1)} \ + \ \frac{1}{3k+2}

Nếu n = 3k + 1. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n-1} \ - \ \frac{3}{n(n-1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k} \ - \ \frac{1}{k(3k+1)} \ + \ \frac{1}{3k+1} \ = \ \frac{1}{k} \ + \ \frac{1}{-k(3k+1)} \ + \ \frac{1}{3k+1}

8 tháng 2 2020

Mại Zô

8 tháng 2 2020

Vậy cậu chứng minh thử nảo cậu = não heo ik đã