Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem trong mấy loại sách thầy mua có bài nào tương tự ko thì tự lm
kiểu j chẳng có
\(Q=\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\left(ĐK:x\ge0;x\ne16\right)\\ =\dfrac{x-4\sqrt{x}+\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-4\right)+3\left(\sqrt{x}-4\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-4\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(P=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
Câu 1:
\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)
\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)
Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)
\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)
Và do $a,b\geq 3$ nên:
\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)
\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)
Cộng tất cả những BĐT trên ta có:
\(A\geq 2+14+62+2=80\) (đpcm)
Dấu "=" xảy ra khi $a=b=3$
Câu 2:
Bình phương 2 vế ta thu được:
\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)
\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)
\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)
\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)
Do đó pt đã cho vô nghiệm.
Chứng minh:\(\left(\dfrac{x\sqrt{x}-3\sqrt{3x}}{x-27}+\dfrac{x^3-x^2+x}{3\sqrt{3x}+x\sqrt{x}}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)= 1
Biến đổi vế trái ta được:
VT=\(\left(\dfrac{(x\sqrt{x}-3\sqrt{3x)}\times\left(3\sqrt{3x}+x\sqrt{x}\right)}{(x-27)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}+\dfrac{\left(x-27\right)\times(x^3-x^2+x)}{\left(x-27\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\left(\dfrac{x^3-27x^2}{\left(x-27\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}+\dfrac{\left(x-27\right)\times\left(x^3-x^2+x\right)}{\left(x-27\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\left(\dfrac{x^2}{3\sqrt{3x}+x\sqrt{x}}+\dfrac{x^3-x^2+x}{3\sqrt{3x}+x\sqrt{x}}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\dfrac{x^3+x}{3\sqrt{3x}+x\sqrt{x}}\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\dfrac{(x^3+x)\times\left(\sqrt{x}+3\sqrt{3}\right)}{(3\sqrt{3x}+x\sqrt{x})\times(x^2+1)}\)
=\(\dfrac{x\times\left(x^2+1\right)\times\left(\sqrt{x}+3\sqrt{3}\right)}{\left(x^2+1\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}\)
=\(\dfrac{x\times\left(\sqrt{x}+3\sqrt{3}\right)}{\sqrt{x}\times\left(x+3\sqrt{3}\right)}\)
=\(\dfrac{x\times\left(\sqrt{x}+3\sqrt{3}\right)}{x\times\left(\sqrt{x}+3\sqrt{3}\right)}\)= 1 =VP
Vậy đẳng thức được chứng minh
a) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (ĐKXĐ: \(x\ne-1;y\ne-4\))
Đặt \(\dfrac{x}{x+1}=a;\dfrac{1}{y+4}=b\left(a\ne0;b\ne0\right)\)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}3a-2b=4\left(1\right)\\2a-5b=9\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow2a=9+5b\Leftrightarrow a=\dfrac{9+5b}{2}\)
Thay \(a=\dfrac{9+5b}{2}\) vào \(\left(1\right)\), ta có:
\(\dfrac{3\left(9+5b\right)}{2}-2b=4\)
\(\Leftrightarrow27+15b-4b=8\)
\(\Leftrightarrow11b=-19\Leftrightarrow b=\dfrac{-19}{11}\)
Thay \(b=\dfrac{-19}{11}\) vào \(\left(2\right)\), ta có:
\(2a-5\cdot\dfrac{-19}{11}=9\)
\(\Leftrightarrow a=\dfrac{2}{11}\)
Với \(a=\dfrac{2}{11}\Rightarrow\dfrac{x}{x+1}=\dfrac{2}{11}\)
\(\Leftrightarrow11x=2x+2\Leftrightarrow x=\dfrac{2}{9}\)
Với \(b=\dfrac{-19}{11}\Rightarrow\dfrac{1}{y+4}=\dfrac{-19}{11}\)
\(\Leftrightarrow-19y-76=11\)
\(\Leftrightarrow y=\dfrac{-90}{19}\)
b,Ta có:
\(PT\Leftrightarrow7+3.\sqrt[3]{2+x}.\sqrt[3]{5-x}\left(\sqrt[3]{2+x}+\sqrt[3]{5-x}\right)=1\)
Thay \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\) vào PT
\(\Rightarrow\) \(3.\sqrt[3]{2+x}.\sqrt[3]{5-x}=-6\)
\(\Leftrightarrow\sqrt[3]{2+x}.\sqrt[3]{5-x}=-2\)
\(\Leftrightarrow\left(2+x\right)\left(5-x\right)=-8\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
Thử lại thấy x= - 3, x=6 thỏa mãn
Vậy x= -3, x = 6
Bài 1:
a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
=\(\sqrt{xy}\)
b.ĐK: x ≠ 1
Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)
*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)
⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)
⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)
c.Ta có:
Điều kiện xác định
\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)
=> Tập xác định là tập rỗng
Vậy pt vô nghiệm
(y + 6x)/y
= (3x + 6x)/(3x)
= (9x)/(3x)
= 3 (1)
y/x = 3x/x = 3 (2)
Từ (1) và (2) suy ra
(y + 6x)/y = y/x (cùng bằng 3)
bn ơi, đề bảo là từ biểu thức c/m y=3x chứ hk phải từ y=3x c/m biểu thức đúng, do mik ghi chx rõ đề, mik cảm mơn ạ