Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^m+x^n+1chia hết x^2+x+1
=>x^m+x^n+x^0chia hết x^2+x^1+x^0
=>x^(m+n+0)chia hết x^(2+1+0)
=>x^(m+n)chia hết x^3
=>m+n chia hết 3
=>m+n thuộc B(3)={0;3;6;......}
nếu m+n thuộc B(3)={0;3;6;......} thì x^m+x^n+1chia hết x^2+x+1
chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ
a ) \(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(\Leftrightarrow8x^3-4x^4-x^2+16x^2-8x^3-2x+8x-4x^2-1=4x^2+4x+4\)
\(\Leftrightarrow-4x^4+11x^2+6x-1=4x^2+4x+4\)
\(\Leftrightarrow-4x^4+7x^2+2x-5=0\)
\(\Leftrightarrow-4x^3\left(x-1\right)-4x^2\left(x-1\right)+3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x^3-4x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[-4x^2\left(x-1\right)-8x\left(x-1\right)-5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(4x^2+8x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^2+8x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x+2\right)^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x+2\right)^2=-1\left(VL\right)\end{matrix}\right.\)
Vậy ...
b ) Giả sử : \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
thì \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2-2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(\frac{ab+1}{a+b}\right)^2-2\left(ab+1\right)\ge0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\) ( luôn đúng )
=> Điều giả sử là đúng
=> ĐPCM
Lời giải:
Ta có:
\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)
\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)
Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)
\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
Do đó:
\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)
b)
Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)
Đặt \(A=x^{3m+1}+x^{3n+2}+1\)
\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)
\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)
Khai triển:
\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)
(đặt là T vì phần biểu thức đó không quan trọng)
\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)
Tương tự, \((x^3)^n-1\vdots x^2+x+1\)
Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)
Ta có đpcm.
Lời giải:
Đặt \(\left\{\begin{matrix} (x+y)^2=a\neq 0\\ xy=b\end{matrix}\right.\)
Dùng cách biến đổi tương đương.
Ta có: \(A=x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=(x+y)^2-2xy+\frac{(xy+1)^2}{(x+y)^2}\)
\(A=a-2b+\frac{(b+1)^2}{a}\)
\(A\geq 2\Leftrightarrow a-2b+\frac{(b+1)^2}{a}\geq 2\)
\(\Leftrightarrow a^2-2ab+(b+1)^2\geq 2a\)
\(\Leftrightarrow a^2+b^2+1-2ab+2b-2a\geq 0\)
\(\Leftrightarrow (-a+b+1)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(-a+b+1=0\Leftrightarrow x^2+y^2+xy=1\)
a/ \(\left(x+\dfrac{1}{x}\right)^2=x^2+2+\dfrac{1}{x^2}=2+7=9\)
\(\Rightarrow x+\dfrac{1}{x}=\pm3\)
Với \(x+\dfrac{1}{x}=3\) thì ta có:
\(\left(x+\dfrac{1}{x}\right)^3=x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=x^3+\dfrac{1}{x^3}+9\)
\(\Rightarrow x^3+\dfrac{1}{x^3}=27-9=18\)
Ta có: \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=x+\dfrac{1}{x}+x^5+\dfrac{1}{x^5}=3+x^5+\dfrac{1}{x^5}\)
\(\Rightarrow x^5+\dfrac{1}{x^5}=7.18-3=123\)
Tương tự cho trường hợp còn lại ta được ĐPCm
b/ Thay \(y=0,75x-2,5\) vào A rồi rút gọn ta được A sau đó làm như bình thường là được
m=2 và n=1