\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)

$_$

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

vì nếu nó không bằng nhau thì đâu cần phải cm nên :

=> nó bằng nhau

25 tháng 7 2017

khai triển và giải thích để e hiểu giúp với ạ !!

30 tháng 7 2017

Xét vế trái ta có :

\(x^4+y^4+\left(x+y\right)^4\)

= \(x^4+y^4+\left(\left(x+y\right)^2\right)^2\)

= \(x^4+y^4+\left(x^2+y^2+2xy\right)^2\)

= \(x^4+y^4+x^4+y^4+4x^2y^2+2x^2y^2+4x^3y+4xy^3\)

= \(2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)

= \(2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)

= \(2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)

= \(2\left(x^2+xy+y^2\right)^2\)

=VP

Vậy đăng thức đã được chứng minh

24 tháng 7 2019

1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)

2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)

3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)

4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)

24 tháng 7 2019

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm

3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm

4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm

14 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

14 tháng 8 2018

Biến đổi VT:

\(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)

\(=2\left(x^2+2x^3y+3x^2y^2+2xy^3+y^4\right)\)

\(=2\left(x^2+xy+y^2\right)\left(x^2+xy+y^2\right)\)

\(=2\left(x^2+xy+y^2\right)^2=VP\)

\(\Rightarrowđpcm\)

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

3 tháng 6 2017

a.

\(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

ta có

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

=>ĐPCM

b.

ta có

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=>ĐPCM

9 tháng 6 2017

a, (x-1) (x2 +x+1)

= x3+x2+x-x2-x-1

= x3-1 (đfcm)

b, (x3+x2y+xy2+y3) (x-y)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

= x4-y4 (đfcm)

24 tháng 6 2016

a) Ta có:

\(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\) (đpcm)

b) Ta có:

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y+x^2y^2+xy^3+y^4=x^4+y^4\)

 

2 tháng 9 2017

Ta có : VP = \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

Vp\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) = VT

Vậy  \(x^4-y^4\) \(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) (đpcm)

22 tháng 8 2018

\(\left(x+y\right)^4+x^4+y^4\)

\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)

\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)

\(=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4y^3x+x^4+y^4\)

\(=2x^4+2y^4+6x^2y^2+4x^3y+4y^3x\)

\(=2\left(x^4+y^4+3x^2y^2+2x^3y+2y^3x\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2y^3x\right)\)

\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)

11 tháng 6 2017

Ta có:

\(VT=2\left(x^2+xy+y^2\right)^2\)

\(=2\left[\left(x^2\right)^2+\left(xy\right)^2+\left(y^2\right)^2+2x^3y+2xy^3+2x^2y^2\right]\)

\(=2\left[x^4+x^2y^2+y^4+2x^3y+2xy^3+2x^2y^2\right]\)

\(=2x^4+2x^2y^2+2y^4+4x^3y+4xy^3+4x^2y^2\)

\(=x^4+y^4+\left(x^4+4x^3y+6x^2y^2+4xy^3+y^2\right)\)

\(=x^4+y^4+\left(x+y\right)^4=VP\)

Vậy \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\) (đpcm)

Chúc bạn học tốt!!!

11 tháng 6 2017

Thằng hiếu đã đánh tan vế trái thì anh đây đánh tan vế trái

\(VT=x^4+y^4+\left(x+y\right)^4\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=\left(x+y\right)^4-4xy\left(x+y\right)^2+\left(2xy\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=2\left[\left(x+y\right)^4-4xy\left(x+y\right)^2+x^2y^2\right]\)

\(=2\left[\left(x+y\right)^2-xy\right]^2\)

\(=2\left(x^2+xy+y^2\right)^2=VP\)