Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
~~~~~~~~
Bài làm trên mình đã sử dụng hằng đẳng thức đáng nhớ sau:
(a+b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a-b)
=> a³ + b³ = (a+b)³ - 3ab(a-b).
Chúc bạn học giỏi!
VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)
\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)
\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)
\(=x^2+y^2+z^2-xy-yz-xz\)
\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)
\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)
\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP
=>dpcm
Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz.\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\text{[}\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\text{]}\)
\(=\frac{1}{2}\left(x+y+z\right)\text{[}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\text{]}\left(\text{đ}pcm\right)\)
Dùng biến đổi sau: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(VT=z^3+\left(x+y\right)^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(z+x+y\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)
\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
\(=VP\)