Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các thiên tài đi đâu hết rùi, bài này tui đăng thử xem sao thui mà ko có ai giải đc
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
xét F(-1)=a-b+c\(⋮\)3 (1); xétF(1)=a+b+c\(⋮\)3(2) từ (1) và (2) suy ra a-b+c+a+b+c\(⋮\)3 suy ra 2(a+c)\(⋮\)3 suy ra a+c\(⋮\)3 (3)
xétF(0)=c\(⋮\)3 suy ra a\(⋮\)3 (4) từ (3) và (4) suy ra F(x)=bx\(⋮3\forall\)x nên b\(⋮\)3
Đặt A = x + 4y; B = 10x + y
Xét biểu thức: 10A - B = 10.(x + 4y) - (10x + y)
= (10x + 40y) - (10x + y)
= 10x + 40y - 10x - y
= 39y
+ Nếu A chia hết cho 13 thì 10A chia hết cho 13 do 39y chia hết cho 13
=> B chia hết cho 13
+ Nếu B chia hết cho 13 do 39y chia hết cho 13
=> 10A chia hết cho 13
Mà (10;13)=1 => A chia hết cho 13
Vậy với mọi x,y thuộc Z ta có: x + 4y chia hết cho 13 <=> 10x + y chia hết cho 13 (đpcm)
\(f\left(0\right)=c\) mà \(f\left(0\right)⋮2011\Rightarrow c⋮2011\)
\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)
\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)
Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)
\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)
Xét x=0: f(0)=0+0+c=c chia hết cho 7 ->c chia hết cho 7
Xét x=1: f(1)=a+b+c chia hết cho 7. mà c chia hết cho 7 nên a+b chia hết cho 7 (1)
Xét x=-1: f(-1)=a-b+c chia hết cho 7. mà c chia hết cho 7 nên a-b chia hết cho 7 (2)
Từ (1) và (2),ta có: a+b+a-b=2a chia hết cho 7 -> a chia hết cho 7 -> b chia hết cho 7
Đặt A = 2x + 3y; B = 9x + 5y
Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)
= (18x + 27y) - (18x + 10y)
= 18x + 27y - 18x - 10y
= 17y
+ Nếu A chia hết cho 17 thì 9A chia hết cho 17; 17y chia hết cho 17
=> 2B chia hết cho 17
Mà (2;17)=1 => B chia hết cho 17
+ Nếu B chia hết cho 17 thì 2B chia hết cho 17; 17y chia hết cho 17 => 9A chia hết cho 17
Mà (9;17)=1 => A chia hết cho 17
Vậy với mọi x,y thuộc Z ta có: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17 (đpcm)
ví dụ x=5 thì đâu có chia hết đâu, sai đề r b