Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tử và mẫu của phân số này.
Ta thấy mẫu số là (x+y)^2+5 có (x+y)^2>=0
5 > 0
=> (x+y)^2+5>0
Ta thấy tử số là 3(x^2+1)+x^2*y^2+y^2-2 có
+) x^2+1>=1 ( do x^2>=0) => 3(x^2+1)>=3
+) x^2*y^2 >=0
+)y^2 >=0
Từ các điều trên => 3(x^2+1)+x^2*y^2+y^2>=3
=> 3(x^2+1)+x^2*y^2+y^2-2>=1>0
=> M dương
Vậy M luôn dương với mọi x và y
![](https://rs.olm.vn/images/avt/0.png?1311)
Hiển nhiên mẫu lớn hơn 0,ta chứng minh tử >0 là xong ^^
\(3\left(x^2+1\right)+x^2y^2+y^2-2\)
\(=3x^2+3+x^2y^2+y^2-2\)
\(=3x^2+x^2y^2+y^2+1>0\rightarrowđpcm\)
ko hiểu ,mày bị điên à . Anh thách mày giải được đấy !!!! Giải được cho tiền nhé !!!! Bye .
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
![](https://rs.olm.vn/images/avt/0.png?1311)
c) \(\left|2x-1\right|+\left|y+5\right|=0\)
Ta có:
\(\left\{{}\begin{matrix}\left|2x-1\right|\ge0\\\left|y+5\right|\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left|2x-1\right|+\left|y+5\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-1\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-1=0\\y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=1\\y=0-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{1}{2};-5\right\}.\)
Chúc bạn học tốt!
\(M=\frac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
\(=\frac{3\left(x^2+1\right)+y^2\left(x^2+1\right)-2}{\left(x+y\right)^2+5}\)
\(=\frac{\left(x^2+1\right)\left(3+y^2\right)-2}{\left(x+y\right)^2+5}\)
Ta có : x2 + 1 ≥ 1 ∀ x
3 + y2 ≥ 3 ∀ y
=> ( x2 + 1 )( 3 + y2 ) ≥ 3 ∀ x, y
=> ( x2 + 1 )( 3 + y2 ) - 2 ≥ 1 > 0 ∀ x, y (1)
Lại có ( x + y )2 + 5 ≥ 5 > 0 ∀ x, y (2)
Từ (1) và (2) => \(\frac{\left(x^2+1\right)\left(3+y^2\right)-2}{\left(x+y\right)^2+5}>0\)
hay M luôn dương ( đpcm )
Ta có :
\(M=\frac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
\(=\frac{3x^2+3+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
\(=\frac{3x^2+x^2y^2+y^2+1}{\left(x+y\right)^2+5}\)
Ta xét : \(\hept{\begin{cases}3x^2\ge0\\x^2y^2\ge0\\y^2\ge0\end{cases}\Rightarrow}3x^2+x^2y^2+y^2\ge0\Rightarrow3x^2+x^2y^2+y^2+1>0\) (1)
và \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\5>0\end{cases}\Rightarrow\left(x+y\right)^2+5>0}\) (2)
Từ (1) , (2) \(\Rightarrow\frac{3x^2+x^2y^2+y^2+1}{\left(x+y\right)^2+5}>0\) hay \(M>0\)