K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 2 2019
\(11.5^{2n}+2^{3n+2}+2^{3n+1}\)
\(=17.5^{2n}-6.5^{2n}+2^{3n}.6\)
\(=17.5^{2n}-6\left(5^{2n}-2^{3n}\right)\)
\(=17.5^{2n}-6\left(25^n-8^n\right)\)
Có \(17.5^{2n}⋮17\)
\(25^n-18^n⋮\left(25-18\right)⋮17\left(với\forall n\right)\)
\(\RightarrowĐpcm\)
4 tháng 2 2019
11.52n + 23n+2 + 23n+1
= 11.25n + 4.23n + 2.23n
= 17.25n - 6.25n + 2.23n.(2+1)
= 17.25n - 6.25n + 6.23n
= 17.25n - 6.(25n - 23n)
= 17.25n - 6.(25n - 8n)
mà 25 - 8 = 17 chia hết cho 17
=> 25n - 8n chia hết cho 17
=> 17.25n - 6.(25n - 8n) chia hết cho 17
=> đpcm
MD
0
DH
0
Lời giải:
$11.5^{2n}+2^{3n+2}+2^{3n+1}=11.25^n+8^n.4+8^n.2=11.25^n+6.8^n$
Vì $25\equiv 8\pmod {17}$
$\Rightarrow 11.5^{2n}+2^{3n+2}+2^{3n+1} =11.25^n+6.8^n\equiv 11.8^n+6.8^n\equiv 17.8^n\equiv 0\pmod {17}$
Hay $11.5^{2n}+2^{3n+2}+2^{3n+1}\vdots 17$
Hay $
Này Akai Haruma, cho mk hỏi mod 17 nghĩa là gì vậy