Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
+) Ta có
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) ( đpcm )
+ ) Theo phần trên
\(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow ab\le\frac{1}{4}\left(a+b\right)^2\) ( đpcm )
2,
Ta có: \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\Leftrightarrow5x^2-9x\left(y+z\right)+5\left(y+z\right)^2=28yz\le7\left(y+z\right)^2\)\(\Leftrightarrow5x^2-9x\left(y+z\right)-2\left(y+z\right)^2\le0\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}-2\le0\)\(\Leftrightarrow\left(5.\frac{x}{y+z}+1\right)\left(\frac{x}{y+z}-2\right)\le0\Leftrightarrow\frac{x}{y+z}\le2\)(Do \(5.\frac{x}{y+z}+1>0\forall x,y,z>0\))
\(\Rightarrow E=\frac{2x-y-z}{y+z}=2.\frac{x}{y+z}-1\le2.2-1=3\)
Đẳng thức xảy ra khi \(y=z=\frac{x}{4}\)
\(4x^2+y^2+z^2+t^2\ge2x\left(y+z+t\right)\)
\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy-2xz-2xt\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x-t\right)^2+x^2\ge0\)(đúng)
=>đpcm
"="<=>x=y=z=t=0
\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy+2xz-2xt>=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2>=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+z\right)^2+\left(x-t\right)^2+x^2>=0\)(luôn đúng)