\(n\ge2\)

ta có : 

\(1+\frac{1}{2}+\f...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

Xét số hạng tổng quát \(\frac{1}{n^3}\)

\((n-1)(n+1)=n^2-1< n^2\)

\(\Rightarrow (n-1)n(n+1)< n^3\)

\(\Rightarrow \frac{1}{(n-1)n(n+1)}>\frac{1}{n^3}\)

Thay $n=2,3,4,.....$. Khi đó ta có:

\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\underbrace{ \frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{(n-1)n(n+1)}}_{A}(*)\)

Mà:

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{(n+1)-(n-1)}{(n-1)n(n+1)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{(n-1)n}-\frac{1}{n(n+1)}\)

\(=\frac{1}{2}-\frac{1}{n(n+1)}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{4}(**)\)

Từ \((*) ;(**)\Rightarrow \frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)

Ta có đpcm.

22 tháng 4 2021

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

NV
9 tháng 3 2019

Ta có \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(\Rightarrow P=\frac{1}{1^3}+\frac{1}{2^3}+...+\frac{1}{n^3}< \frac{1}{1^3}+\frac{1}{2^3}+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(\Rightarrow P< \frac{1}{1^3}+\frac{1}{2^3}+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{n\left(n+1\right)}\right)\)

\(\Rightarrow P< 1+\frac{1}{2^3}+\frac{1}{2}.\frac{1}{2.3}=1+\frac{1}{8}+\frac{1}{12}=\frac{29}{24}< \frac{65}{54}\)

22 tháng 2 2017

Gọi A là vế trái của bất đăng thức trên . ta sử dụng tính chất bắc cầu của bất đẳng thức dưới dạng phương pháp làm trội , để chứng minh A< b , ta làm trội A thành C ( A<C ) rồi chứng minh C>= B ( biểu thức C đóng vai trò là biểu thức trung gian để so sánh A và B)

làm trội mỗi phân số ở A bằng cách làm giảm các mẫu , ta có 

\(\frac{1}{k^3}\)\(\frac{1}{k^3-k}\)\(\frac{1}{k\left(k^2-1\right)}\)\(\frac{1}{\left(k-1\right)k\left(k+1\right)}\)

do đó 

A < \(\frac{1}{2^3-2}\)\(\frac{1}{3^3-3}\)+.....+\(\frac{1}{n^3-n}\)\(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+ .....+ \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

đặt C = \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+.....+\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\), nhận xét rằng 

\(\frac{1}{\left(n-1\right)n}\)\(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

nên C = \(\frac{1}{2}\)[\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)-......- \(\frac{1}{\left(n-1\right)n}\)-\(\frac{1}{n\left(n+1\right)}\)]

\(\frac{1}{2}\)[\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)]

\(\frac{1}{4}\)\(\frac{1}{2n\left(n+1\right)}\)\(\frac{1}{4}\)

vậy ta có điều phải chứng minh

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

26 tháng 9 2024

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

9 tháng 2 2018

Ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=1\)

\(\Leftrightarrow ab+bc+ca\le\frac{1}{3}< \frac{1}{2}\)

9 tháng 2 2018

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}\)

\(< 1\)