K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4\left(a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-4a+4+b^2-4b+4\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (Luôn đúng)

Vậy đẳng thức ban đầu được chứng minh.

27 tháng 4 2022

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

14 tháng 4 2017

Ta có:

\(a^2+8.5b^2+34\ge4ab+2b+8a\)

\(\Leftrightarrow\) \(2a^2+17b^2-8ab-4b-16a+68\ge0\)

\(\Leftrightarrow\left(a^2-8ab+16b^2\right)+\left(a^2-16a+64\right)+\left(b^2-4b+4\right)\ge0\)

\(\Leftrightarrow\left(a-4b\right)^2+\left(a-8\right)^2+\left(b-2\right)^2\ge0\) (Đúng)

Vậy \(a^2+8.5b^2+34\ge4ab+2b+8a\) (Đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 4 2021

Lời giải:

$a^2+b^2+1011-(ab+a+b)=\frac{2a^2+2b^2+2022-2ab-2a-2b}{2}$

$=\frac{(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)+2020}{2}$

$=\frac{(a-b)^2+(a-1)^2+(b-1)^2+2020}{2}$

$\geq \frac{2020}{2}>0$

$\Rightarrow a^2+b^2+1011> ab+a+b$

Ta có đpcm.

30 tháng 3 2021

a2 + b2 + 3 > ab + a + b

<=> 2a2 + 2b2 + 6 > 2ab + 2a + 2b

<=> 2a2 + 2b2 + 6 - 2ab - 2a - 2b > 0

<=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + 4 > 0 

<=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 + 4 > 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

30 tháng 3 2021

quãng đường từ nhà Giang đến chợ huyện gồm một đoạn lên dốc .Giang đi từ nhà đến chợ huyện hết 2h 45 phút.Vận tốc khi lên dốc là 8 km/giờ,vận tốc khi xuống dốc là 12km/giờ.Thời gian khi lên dốc hơn thời gian khi xuống dốc là 0,25 giờ.Tính quãng đường từ nhà Giag đến chợ huyện

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

14 tháng 4 2019

a)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=1\)

b) \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

\("="\Leftrightarrow a=b\)