\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

       \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)

\(\Leftrightarrow\)\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{a+b+c}{2}+\left(a+b+c\right)\)

\(\Leftrightarrow\)\(\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\frac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) (luôn đúng  BĐT Netbitt)

C/m:    \(VT=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

       \(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)

      \(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)

     \(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

     \(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

Ta có:   \(x+\frac{1}{x}\ge2\)   (x > 0)     (*)

     \(\Leftrightarrow\)\(\frac{x^2+1}{x}\ge\frac{2x}{x}\)

    \(\Leftrightarrow\) \(\frac{x^2-2x+1}{x}\ge0\) 

   \(\Leftrightarrow\)\(\frac{\left(x-1\right)^2}{x}\ge0\) luôn đúng 

Dấu "=" xảy ra   \(\Leftrightarrow\)\(x=1\) 

ÁP dụng   BĐT (*) ta có:   

    \(VT=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

  \(VT\ge\frac{1}{2}.9-3=\frac{3}{2}\) 

\(\Rightarrow\)đpcm

29 tháng 4 2018

áp dụng bất đẳng thức CAUCHY SCHAWRZ DẠNG PHÂN THỨC

\(\frac{a^2}{a+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

NV
13 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\) ; \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)

Cộng vế với vế:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c=6\)

Dấu "=" xảy ra khi \(a=b=c=2\)

9 tháng 11 2017

tau lam theo cach nay hoi dai nhung van dung

xet:a2/b2+c2-a/b+c=ab(a-b)+ac(a-c)/(b2+c2)(b+c)(1)

tg tu:b2/c2+a2-b/c+a=bc(b-c)+ab(b-a)/(a2+c2)(c+a)(2)

           c2/a2+b2-c/a+b=ac(c-a)+cb(c-b)(3)

lay(1)+(2)+(3) roi dat thua so chung ab(a-b);ac(c-a);bc(b-c) ra roi gia su a=>b=>c>0 suy ra bieu thuc trong ngoac ko am =>dpcm

16 tháng 3 2020

áp dụng BĐT sacxo nên \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

26 tháng 2 2020

Áp dụng BDT Svacxo ta có :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Cách khác sử dụng Cosi : Dự đoán điểm rơi và ghép hợp lí !

26 tháng 2 2020

Áp dụng bất đẳng thức cô - si với hai số dương:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

\(\frac{b^2}{c+a}+\frac{a+c}{4}\ge b\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{a+c}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)

=> => \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)

Dâu "=" xảy ra <=> a = b = c

4 tháng 4 2019

Bạn ơi , bao giờ giáo viên của bạn chữa cho bạn bài này thì cho mình xin lời giải nhé , mình cám ơn ạ !

6 tháng 4 2019

\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\)

\(\frac{b^2}{a^2+c^2}-\frac{b}{a+c}=\frac{ab\left(b-a\right)+bc\left(b-c\right)}{\left(a^2+c^2\right)\left(a+c\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\)

Cộng các vế ta có:

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+c^2\right)\left(a+c\right)}\right]\)\(+ac\left(a-c\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(a^2+c^2\right)\left(a+c\right)+}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

Giả sử \(a\ge b\ge c>0\)thì

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)>0\)

=> \(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Dấu " = " xảy ra <=> a=b=c

17 tháng 3 2018

a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì

 \(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)

Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.

d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9

Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c

e,Xét hiệu :

\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\)  => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.

=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM

30 tháng 9 2019

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(=\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a-a-b-c\)

\(\ge2\sqrt{\frac{a^2b}{b}}+2\sqrt{\frac{b^2c}{c}}+2\sqrt{\frac{c^2a}{a}}-a-b-c\)

\(=2a+2b+2c-a-b-c=a+b+c\)

Dấu '=' xảy ra khi a=b=c

30 tháng 9 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engle ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(đpcm\right)\)

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

3 tháng 8 2017

a)

Đặt   \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Schwarz , ta có :

\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)  (1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\)     (2)

Từ (1) và (2) , suy ra :  \(A\ge\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

b)

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)

4 tháng 8 2017

 tại sao lại dc cái này bạn

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}\)