\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}<3,5 \)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

Áp dụng BĐT cô si với hai số không âm ta có :

\(1.\sqrt{a+1}\le\frac{a+1+1}{2}=\frac{a}{2}+1\)

\(1.\sqrt{b+1}\le\frac{b}{2}+1\)

\(1.\sqrt{c+1}\le\frac{c}{2}+1\)

=> \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3+\frac{a+b+c}{2}=3+\frac{1}{2}=3,5\)

=> ĐPCM 

2 tháng 10 2018

k mình nha

2 tháng 10 2018

bn giải đi đã

23 tháng 8 2016

Ta có \(\sqrt{1+a}\le\frac{a\:+1+1}{2}=\frac{a+2}{2}\)

Tương tự \(\sqrt{1+b}\le\frac{b+2}{2}\)

\(\sqrt{1+C}\le\frac{c+2}{2}\)

Từ đó ta có \(\sqrt{1+a}+\sqrt{1+b}+\sqrt{1+c}\)<= \(\frac{a+b+c+6}{2}=\frac{7}{2}\)= 3,5

23 tháng 5 2018

Bạn alibaba nguyễn hình như đọc không kĩ đề thì phải, ở đây ng ta bảo chứng minh bé hơn đâu phải bé hơn hoặc bằng đâu mà bạn dừng lại ở đó không giải tiếp ? ĐOạn sau các bạn làm như này nhé :

Dấu "=" xảy ra <=>  \(\hept{\begin{cases}a+1=1\\b+1=1\\c+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)(Vô lý)
vậy dấu "=" không xảy ra => \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)

24 tháng 10 2017

<=> √a+1+√b+1+√c+1< √12.25

<=>a+1+b+1+c+1< 12.25

<=>4<12.25(dpcm)

hay √2 <3.5

25 tháng 10 2017

Áp dụng BĐT Bunyakovsky, ta có:

\(\left(a+1+b+1+c+1\right)3\ge\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{12}< 3,5\)

15 tháng 9 2019

Ta c/m 1) \(c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a,b>0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

2) \(a,b>0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

Thật vậy ĐK: a+c>0, b+c>0 mà c<0 \(\Rightarrow a,b>0\)

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow\hept{\begin{cases}c< 0\\c^2=ab+ac+bc+c^2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c< 0\\ab+bc+ca=0\end{cases}\Rightarrow\hept{\begin{cases}c< 0\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}}\)

\(\Rightarrow\)đpcm

2) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\)mà \(a,b>0\Rightarrow c< 0\)

\(\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\Rightarrow c=\frac{-ab}{a+b}\)

\(\Rightarrow\hept{\begin{cases}a+c=a-\frac{ab}{a+b}=\frac{a^2}{a+b}\\b+c=b-\frac{ab}{a+b}=\frac{b^2}{a+b}\end{cases}}\)

\(\Rightarrow\sqrt{a+c}+\sqrt{b+c}=\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{a+b}}=\frac{a+b}{\sqrt{a+b}}=\sqrt{a+b}\)

\(\Rightarrow\)Đpcm

17 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có

\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)

Khi \(a=b=c\)

b)Áp dụng tiếp AM-GM:

\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)

\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)

Khi \(a=b=1\)

23 tháng 7 2019

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )