Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
Ta chứng minh như sau:
+ Khi a và b là 2 số nguyên dương chia hết cho 3, thì tồn tại 2 số nguyên dương p và q sao cho:
- a = 3 p và b = 3q. Lúc đó: a^ 2 + b^2 = (3p)^2 + (3q)^2 = 9.p^2 + 9.q^2 = 3[ 3.p^2 + 3.q^2] = 3.H, với H là số tự nhiên.
Suy ra: a^2 + b^2 là số chia hết cho 3
Ta có:
\(4a^2+3ab-11b^2=4a^2+4ab-11ab-11b^2+10ab\)
\(=4a\left(a+b\right)-11b\left(a+b\right)+10ab\)
\(=\left(4a-11b\right)\left(a+b\right)+10⋮5\)
\(10ab⋮5\Rightarrow\left(4a-11b\right)\left(a+b\right)⋮5\)
* \(a+b⋮5\Rightarrow a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(1\right)\)
* \(4a-11b⋮5\Rightarrow4a-11b=5a-10b-a+b\)
Vì \(5a-10b⋮5\Rightarrow a-b⋮5\)
\(a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(a^4-b^4⋮5\left(đpcm\right)\)
ddd
*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)
Nên c2≡2(mod3)c2≡2(mod3) (Vô lí)
Nên Tồn tại ab⋮3ab⋮3
*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4
Vậy từ 2 TH trên có đpcmcdvm