K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

8 tháng 6 2016
bạn tự kẻ hình nha
a) Xét (o) có SB và SC là hai tiếp tuyến
=> góc SBO = góc SCO = 90độ
=> góc SOC + góc SOB = 90 độ +90độ = 180 độ
Mà 2 góc này ở vị trí đối nhau của tg SBOC
=> tg SBOC nội tiếp

4 tháng 2 2022
Bài 1:
a: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
OI là một phần đường kính
CE là dây
OI⊥CE tại I
Do đó: I là trung điểm của CE
Xét ΔDCE có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDCE cân tại D
Xét ΔOED và ΔOCD có
OE=OC
ED=CD
OD chung
Do đó: ΔOED=ΔOCD
Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)
hay DE là tiếp tuyến của (O)
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
góc EAF chung
Do đó: ΔAEF~ΔACB
b: ΔAEF~ΔACB
=>\(\hat{AEF}=\hat{ACB}\)
mà \(\hat{AEF}=\hat{MEB}\) (hai góc đối đỉnh)
nên \(\hat{MEB}=\hat{MCF}\)
Xét ΔMEB và ΔMCF có
\(\hat{MEB}=\hat{MCF}\)
\(\hat{EMB}\) chung
Do đó: ΔMEB~ΔMCF
=>\(\frac{ME}{MC}=\frac{MB}{MF}\)
=>\(ME\cdot MF=MB\cdot MC\)
a) Chứng minh: ∠AFE = ∠ABC
Ta có: ΔAHE vuông tại E và ΔAHF vuông tại F
∠AEH = ∠AFH = 90°
∠EAH = ∠FAH (chung góc)
⇒ ΔAHE ~ ΔAHF (g.g)
⇒ ∠AHE = ∠AHF
Ta có: ∠AHE = ∠ABC (cùng phụ với ∠BAH)
∠AHF = ∠AFE (cùng phụ với ∠CAH)
⇒ ∠AFE = ∠ABC
b) Chứng minh: ME.MF = MB.MC
Ta có: ΔMEB ~ ΔMFC (g.g)
⇒ ME/MF = MB/MC
⇒ ME.MF = MB.MC
c) Tính độ dài đoạn vuông góc hạ từ A xuống EF
Ta có: ∠BAC = 60°, ∠ABC = 80°
⇒ ∠ACB = 40°
Ta có: ΔABC ~ ΔAEF (g.g)
⇒ AF/AC = AE/AB
Ta có: AH ⊥ BC, EF ⊥ AH
Gọi K là giao điểm của AH và EF
Ta có: AK ⊥ EF
Sử dụng công thức tính diện tích tam giác ABC:
S = (1/2).AB.AC.sin(∠BAC)
S = (1/2).AH.BC
Từ đó tính được AH
Sau đó, tính AK bằng cách sử dụng tỷ lệ giữa các cạnh của ΔAEF và ΔABC
Kết quả: AK ≈ 5,18 cm (sau khi tính toán và làm tròn)