K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>\(\widehat{AHB}=\widehat{AHC}\)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

=>AH\(\perp\)BC

c: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{5^2-3^2}=4\left(cm\right)\)

d: ΔAHB=ΔAHC

=>\(\widehat{HAB}=\widehat{HAC}\)

Xét ΔAEH vuông tại E và ΔAKH vuông tại K có

AH chung

\(\widehat{EAH}=\widehat{KAH}\)

Do đó: ΔAEH=ΔAKH

=>HE=HK

e: ΔAEH=ΔAKH

=>AE=AK

Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AK}{AC}\)

nên EK//BC

 

9 tháng 3 2020

A B C H

a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)

\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)

BH=HC(H là trung điểm BC)

=> Tam giác ABH = Tam giác ACH (cgc)

b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)

=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC

=> AH vuông góc với BC(đpcm)

9 tháng 3 2020

A C B H E K 1 2

a) Xét t/giác ABH và t/giác ACH

c: AB = AC (gt)

  BH = CH (gt)

  AH: chung

=> t/giác ABH = t/giác ACH (c.c.c)

b) Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> AH \(\perp\)BC

c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16

=> AH = 4 (cm)

d) Ta có: t/giác AHB = t/giác AHC (cmt)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)

Xét t/giác AHE và t/giác AHK

có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)

  AH : chung

\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)

=> t/giác AHE = t/giác AHK (ch - gn)

=> HE = HK (2 cạnh t/ứng)

e) Ta có: t/giác AHE = t/giác AHK (cmt)

=> AE = AK (2 cạnh t/ứng)

=> t/giác AEK cân tại A

=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)

T/giác ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)

Mà 2  góc này ở vị trí đồng vị

=> EK // BC

9 tháng 2 2017

a,xét tam giác ABH và tam giác ACH co

BH=HC(gt)

AH CHUNG

A1=A2=>TAM GIAC ABH=TM GIAC ACH

C,

27 tháng 3 2020

nhanh lên

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

27 tháng 6 2020

a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90

AB = AC do tg ABC cân tại A (gt)

^ABC = ^ACB do tg ABC ... 

=> tg AHB = tg AHC (ch-gn)

b, tg ABC cân tại A (Gt) mà có AH là đường cao   (1)

=> AH đồng thời là đường trung tuyến

=> H là trung điểm của BC 

=> BH = 1/2BC = 6 cm

tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)

AB = 10 (gt)

=> AH = 8 do AH > 0

c,   (1) => AH đồng thời là pg của ^BAC (đl)

=> ^CAH = ^BAH (đn)

có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)

=> ^BAH = ^AHE 

=> tg AHE cân tại E (dh)

26 tháng 2 2019

 Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại Ha) Chứng minh rằng H làtrung điểm của đoaṇ thẳng BCb) Tính độ dài đoạn thẳng AHc) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ làtrung điểmcủa HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?d) Chứng minh AH là đường trung trực của đoạn thẳng DE .e) Tìm điều kiện của tam...
Đọc tiếp

 

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

0