Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)
=> a=bk ,c=dk
a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)
b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)
b,
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c,
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
ta có: \(a=bk;c=dk\)
\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
d,
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
ta có:\(a=bk;c=dk\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
e,
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
Ta có:\(a=bk;c=dk\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
f,
(để hôm sau lm nha, mỏi tay quá)
a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)
\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)
Còn các phần còn lại làm giống thế
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Suy ra: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\left(1\right)\)
\(Và:\) \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Vậy \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\) \(\left(ĐPCM\right)\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
Áp dụng t/c' dãy tỉ số bằng nhau , ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\left(đpcm\right)\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=> a = b.k ; c = d.k
Ta lại có : \(\dfrac{a-b}{a+b}=\dfrac{b.k-b}{b.k+b}=\dfrac{b.\left(k-1\right)}{b.\left(k+1\right)}=\dfrac{k-1}{k+1}\)
\(\dfrac{c-d}{c+d}=\dfrac{d.k-d}{d.k+d}=\dfrac{d.\left(k-1\right)}{d.\left(k+1\right)}=\dfrac{k-1}{k+1}\)
Vì \(\dfrac{a-b}{a+b}=\dfrac{k-1}{k+1}\) ; \(\dfrac{c-d}{c+d}=\dfrac{k-1}{k+1}\) nên \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Vậy \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Giải:
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
Vậy...
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)
Thay (1) vào:
\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)
\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)
Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a/ \(VT=\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1=\left(1\right)\)
\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b/ \(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
c/ \(VT=\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5d}=\dfrac{b\left(2k-5\right)}{d\left(2k-5\right)}=\dfrac{b}{d}\left(1\right)\)
\(VP=\dfrac{3a+4b}{3c+4d}=\dfrac{3bk+4b}{3dk+4d}=\dfrac{b\left(3k+4\right)}{d\left(3k+4\right)}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2a-5b}{2c-5đ}=\dfrac{3a+4b}{3c+4d}\)
d/ \(VT=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{b^2-k^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\left(1\right)\)
\(VP=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)
a) Ta co: a/b = c/d= k
=> a=bk
c=dk
Ta co: a-b/a+b = bk-b/bk+b = b(k-1)/b(k+1) = k-1/k+1 (1)
Ta co: c-d/c+d = dk-d/dk+d = d(k-1)/d(k+1) = k-1/k+1 (2)
Tu (1) va (2)
=> a-b/a+b=c-d/c+d
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*) ta có:
\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\) (1)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\) (2)
Từ (1) và (2) suy ra \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b) Từ (*) ta có:
\(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{b\left(7k-4\right)}{b\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (3)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{d\left(7k-4\right)}{d\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (4)
Từ (3) và (4) suy ra \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
c) Từ (*) ta có:
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (5)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (6)
\(\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}=\dfrac{\left[\left(dk\right)-\left(bk\right)\right]^2}{\left(d-b\right)^2}=\dfrac{\left[k\left(d-b\right)\right]^2}{\left(d-b\right)^2}=k^2\) (7)
Từ (5), (6) và (7) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{ac}{bd}=\dfrac{bkdk}{bd}=k^2\) (1)
\(\dfrac{5a^2+7c^2}{5b^2+7d^2}=\dfrac{5\left(bk\right)^2+7\left(dk\right)^2}{5b^2+7d^2}=\dfrac{5b^2.k^2+7d^2.k^2}{5b^2+7d^2}=\dfrac{k^2\left(5b^2+7d^2\right)}{5b^2+7d^2}=k^2\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{ac}{bd}=\dfrac{5a^2+7c^2}{5b^2+7d^2}\left(đpcm\right)\)