Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = (2 + 22 + 23) + (24 + 25 + 26) + ..........+ (258 + 259 + 260)
= 2 . (1 + 2 + 4 ) + 24.(1+2+4) + ....... + 258.(1+2+4)
= 2.7 + 24.7 + .........+258.7
= 7.(2+24+.....+258)
Giải:
\(A=\text{( }2^1+2^2+2^3\text{)}+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2^1.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+2^{58}\right)⋮7\)
\(\Rightarrow A=2^1+2^2+2^3+2^4+....+2^{59}+2^{60}\) chia hết cho \(7\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(\Rightarrow A=2^1.7+2^4.7+...+2^{58}.7\)
\(\Rightarrow A=7\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow\)A chia hết cho 7 vì tích có chứ thừa số 7
Vậy A chia hết cho 7
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
\(A=2^1+2^2+2^3+...+2^{60}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=\left(2.1+2.2+2.2^2\right)+...+\left(2^{58}.1+2^{58}.2+2^{58}.2^2\right)\)
\(=2.\left(1+2+4\right)+...+2^{58}.\left(1+2+4\right)\)
\(=2.7+...+2^{58}.7\)
\(=\left(2+2^{58}\right).7⋮7\)hay \(A⋮7\)
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=2.(1+2+2^2)+...+2^58(1+2+2^2)
A=2.7+...+2^58.7
A=7(2+2^4+....+2^58) chia hết cho 7
vậy...
A=2^1+2^2+...+2^60
=(2^1+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^...
= ( 2^1+2^2+2^3)*(2^0+2^3+2^6+...+2^57)
= 14*(2^0+2^3+2^6+...+2^57) chia het cho 7
ko bt đúng hay sai nx!!
\(A=2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(\Rightarrow A=2^1\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(\Rightarrow A=7\cdot\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow A⋮7\)
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23 + 24) + ... + (259 + 260)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) chia hết cho 3
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)
= 2.(1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 258.(1 + 2 + 22)
= 2.7 + 24.7 + ... + 258.7
= 7.(2 + 24 + ... + 258) chia hết cho 7
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + ... + 257.(1 + 2 + 22 + 23)
= 2.15 + 25.15 + ... + 257.15
= 15.(2 + 25 + ... + 257) chia hết cho 15
A=2^1+2^2+...+2^60=(2^1+2^2+2^3)+...+(2^58+2^59+2^60)=2^1.(1+2+2^2)+2^4.(1+2+2^2)+...+2^58.(1+2+2^2)=2^1.7+2^4.7+...+2^58.7
=7.(2^1+2^4+...+2^58) chia hết cho 7 (đpcm)
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 chia hết cho 7(đpcm)
2+2^2+2^3+...+2^60
=(2+2^2+2^30)+...+(2^58+2^59+2^60)
=2*(1+2+2^2)+...+2^58*(1+2+2^2)
=2*7+...+2^58*7
=(2+...+2^58)*7
Suy ra ĐPCM
A=2+22+23+...+260
=(2+22+23)+...+(258+259+260)
=2.(1+2+22)+...+258.(1+2+22)
=2.7+...+258.7
=7.(2+...+258) chia hết cho 7