\(^2\) + 2\(^3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

\(A=2+2^2+2^3+2^4+....+2^{199}+2^{200}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{199}+2^{200}\right)\)

\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{199}\left(1+2\right)\)

\(\Leftrightarrow A=2.3+2^3.3+....+2^{199}.3\)

\(\Leftrightarrow A=3\left(2+2^3+2^5+....+2^{199}\right)⋮3\left(dpcm\right)\)

15 tháng 2 2018

A = 21 + 22 + 23 + ..... + 259 + 260

A = ( 21 + 22 + 2) + ... + ( 258 + 259 + 260 )

A = 21 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22 )

A = 21 . 7 + ... + 258 . 7 \(⋮\)7

Vậy A \(⋮\) 7

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

25 tháng 9 2018

Chứng minh làm gì khi đã biết 😂

25 tháng 9 2018

A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)

A=(1+2)  +     2^2(1+2)+    +(2^2018(1+2)

a=3.1+2^2 x 3 +.......+2^2018x3

A=3(1+2^2+....+2^2018)  chia hết cho 3  (vì 3 nhân với số nào cũng chia hết cho 3)

=>A chia hết cho 3

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

30 tháng 6 2017

Bài 1 :

a) A = \(8^2\) . \(32^4\) = \(\)(2\(^3\))\(^2\) . ( \(2^5\))\(^4\) = 2\(^6\) . 2\(^{20}\) = 2\(^{26}\)

b) B = 27\(^3\) . 9\(^4\) . 243 = ( \(3^3\))\(^3\) . ( \(3^2\) )\(^4\) . 3\(^5\) = 3\(^9\) . \(3^8\) . 3\(^5\) = 3\(^{22}\)

30 tháng 6 2017

Bài 2 : So sánh

a) A = 27\(^5\) và B =2433

Ta có : 27\(^5\) =(3\(^3\))\(^5\) = 3\(^8\) = 6561

Vì 6561 > 2433 nên A > B .

b) A = 2300 và B = 3\(^{200}\)

Ta có : B = \(3^{200}\) = 3\(^8\) . 3\(^{192}\) = 6561 . 3\(^{192}\)

Vậy chắc chắn rằng B > A .

15 tháng 7 2018

a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt tổng trong ngoặc là M

=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)

Khi đó A=1+M (M<1)

Ta có công thức :1+x<2 nếu x<1

=>A<1

15 tháng 7 2018

bn ơi A < 2 makk

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

21 tháng 1 2019

haha

28 tháng 3 2019

haha