K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Tập xác định của hàm số : D = R\{-3}

\(y'=\dfrac{11}{\left(x+3\right)^2}>0\forall x\in D\)

Hàm số đồng biến trên tập xác định.

Vậy chọn đáp án D.

31 tháng 3 2017

Tập xác định của hàm số: D = R\ {-3}

2016-08-01_222630

Hàm số đồng biến trên tập xác định

Chọn đáp án D

15 tháng 12 2021

hay qáu cho một vé báo cáo nhé cảm ơn mình đi 

31 tháng 3 2017

y’ = -x2 - 1 < 0, ∀x ∈ R

Hàm số luôn nghịch biến trên tập xác định. Do đó hàm số không có cực trị.

Chọn đáp án B


AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Bạn viết lại công thức của $f(x)$ trường hợp \(x<1, x\neq 0\) hộ mình với

21 tháng 7 2018

dạ là f(x)=x2 /x khi x<1 và x≠0 ạ

31 tháng 3 2017

Ta có: 1 + x = 0 ⇔ x = -1

limx→−1−y=+∞,limx→−1+y=−∞limx→−1−⁡y=+∞,limx→−1+⁡y=−∞. Tiệm cận đứng x = -1

limx→±∞y=−1limx→±∞⁡y=−1. Tiệm cận ngang y = 1

Vậy đồ thị có 2 tiệm cận. Chọn đáp án B



31 tháng 3 2017

Ta có: 1 + x = 0 ⇔ x = -1

lim y = + ∞, lim y = − ∞ .Tiệm cận đứng x = -1

lim y= −1 . Tiệm cận ngang y = 1

Vậy đồ thị có 2 tiệm cận. Chọn đáp án 2


31 tháng 3 2017

y’= 4x3 ⇔ x = 0.

Đạo hàm y’ < 0 với x < 0 và y’ > 0 với x > 0.

Vậy hàm số chỉ có 1 cực tiểu tại x = 0 và không có điểm cực đại.

Vậy chọn đáp án 1



NV
9 tháng 5 2019

\(\int\limits^2_0x.f'\left(2x\right)dx\) thì tính được, còn \(\int\limits^4_0x.f'\left(2x\right)dx\) thì mình nghĩ thế này chưa đủ dữ liệu để tính

NV
11 tháng 4 2019

Câu 1:

\(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\int\limits^3_0\sqrt{x+1}dx\)

\(=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\frac{14}{3}=\frac{302}{15}\Rightarrow\int\limits^1_0f'\left(x\right)\sqrt{x+1}dx=\frac{232}{15}\)

Ta có:

\(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\frac{dx}{\sqrt{x+1}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2\sqrt{x+1}\end{matrix}\right.\)

\(\Rightarrow I=2f\left(x\right)\sqrt{x+1}|^3_0-2\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx\)

\(=4f\left(3\right)-2f\left(0\right)-2.\frac{232}{15}\)

\(=2\left(2f\left(3\right)-f\left(0\right)\right)-\frac{464}{15}=36-\frac{464}{15}=\frac{76}{15}\)

NV
11 tháng 4 2019

Câu 2:

\(I_1=\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\)

Đặt \(\left\{{}\begin{matrix}u=\frac{x}{x+1}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{\left(x+1\right)^2}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I_1=\frac{xf\left(x\right)}{x+1}|^3_1-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}=\frac{3.3}{3+1}-\frac{1.3}{1+1}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=0\)

\(\Rightarrow\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}\)

Ta có:

\(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx=\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx+\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx=\frac{3}{4}+I_2\)

Xét \(I_2=\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx\Rightarrow\) đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\frac{1}{\left(x+1\right)^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=\frac{-1}{x+1}\end{matrix}\right.\)

\(\Rightarrow I_2=\frac{-lnx}{x+1}|^3_1+\int\limits^3_1\frac{dx}{x\left(x+1\right)}=-\frac{1}{4}ln3+\int\limits^1_0\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

\(=-\frac{1}{4}ln3+ln\left(\frac{x}{x+1}\right)|^3_1=-\frac{1}{4}ln3+ln\frac{3}{4}-ln\frac{1}{2}=\frac{3}{4}ln3-ln2\)

\(\Rightarrow I=\frac{3}{4}+\frac{3}{4}ln3-ln2\)