Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : a^2 +b^2 =c^2 +d^2 => a^2 -c^2=d^2-b^2
<=> (a-c)(a+c)=(d-b)(d+b) (1)
Mặt khác : a+b=c+d => a-c=d-b (2)
Từ (1),(2) => (a-c)(a+c-d-b)=0
⇒[
a−c=0 |
a+c−d−b=0 |
xét TH1: a-c=0 =>a=c mà a+b=c+d => a=c ; b=d
=> a^2002 +b^2002 =c^2002 +d^2002 (đpcm
xét TH2: a+c-d-b=0
⇒{
a−b=d−c |
a+b=c+d |
⇒{
a=d |
b=c |
https://olm.vn/hoi-dap/question/1051251.html
vào đây mà gợi ý nhé
abc = 1 => a3b3c3=1
<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)
Áp dụng BĐT cauchy cho 3 số dương ta có :
\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)
Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)
\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)
\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)
Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)
Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D
Áp dụng BĐT Svac - xơ:
\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)\(=\frac{1^2}{a^2+2ab}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\ge9\)(Vì \(a+b+c\le1\))
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k mk nha
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k
mk nha
:D