Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> (a + b).(c - a) = (c + a).(a - b)
=> (a + b).c - (a + b).a = (c + a).a - (c + a).b
=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b
=> b.c - a2 = a2 - b.c
=> b.c + b.c = a2 + a2
=> 2.b.c = 2.a2
=> b.c = a2 (đpcm)
Cách 1:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)
Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:
\(a+b=k\left(a-b\right)\) và \(c+a=k\left(c-a\right)\)
\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\) và \(c\left(1+k\right)=a\left(-k-1\right)\)
\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\) và \(\frac{c}{a}=\frac{k+1}{k-1}\)
Từ hai đẳng thức cuối ta được:
\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) ->Đpcm
2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)
\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)
Từ (1) và (2) ->Đpcm
Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)
Đặt:
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk\)
\(\Rightarrow c=dk\)
Thế vào vế phải:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\frac{bk^2+b^2}{dk^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}=\frac{b}{d}\)
Thế vào vế trái:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}=\frac{b}{d}\)
=> Vế phải = vế trái
=> ĐPCM
Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vì \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)
Vậy.......
A/B=C/D <=>A/C=B/D
THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ
A/C=B/D=A+B/C+D=A-B/C-D
=>A+B/C+D=A-B/C-D
=>A+B/A-B=C+D/C-D =>ĐPCM
hahaha Nguyễn Tuấn Thái ttv cop bài của mk chỗ a2 mk viết nhầm thành a2 nó chép vào nên bị sai theo mọi người tích đúng cho mk nhá sai chính tả 1 chút thôi mà
tốt nhất là bạn hãy l-i-k-e cho mk đi