Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) CÓ TAM GIÁC MNP CÂN TẠI M(gt)
=> MN=MP( ĐN TAM GIÁC CÂN)
XÉT TAM GIÁC MFP CÂN TẠI F VÀ TAM GIÁC MEN CÂN TẠI E CÓ:
MP=MN(CMT)
GÓC M CHUNG
=> TAM GIÁC MFP = TAM GIÁC MEN( CH-GN)
b)CÓ TAM GIÁC MFP = TAM GIÁC MEN( CM Ở CÂU a)
XÉT TAM GIÁC MFO VUÔNG TẠI F VÀ TAM GIÁC MEO VUÔNG TẠI E CÓ:
MO CHUNG
MF=ME( CMT)
=> TAM GIÁC MFO = TAM GIÁC MEO( CH-CGV)
=> GOC FMO = GÓC EMO( 2 GÓC TƯƠNG ỨNG)
=> MO LÀ TIA PHÂN GIÁC CỦA GÓC NMP

câu b bạn có thể cm tam giác MQN=MQP(c-g-c) để suy ra QN=QP
c)tam giác MQN=MQP
=> góc N=P( hai góc tương ứng)
tam giác MNP có góc M+N+P=180o
=> 7N+N+N=1800
=> 9N=180
N=180/9=20
M=7N=7*20=140
N=P=20 độ
vậy M=140
N=20
P=20

a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
a: Xét ΔQEN và ΔQFP có
QE=QF
\(\widehat{EQN}\) chung
QN=QP
Do đó: ΔQEN=ΔQFP
=>EN=FP
b: Ta có: QF+FN=QN
QE+EP=QP
mà QF=QE và QN=QP
nên FN=EP
Xét ΔFNP và ΔEPN có
FN=EP
FP=EN
NP chung
Do đó: ΔFNP=ΔEPN
=>\(\widehat{FPN}=\widehat{ENP}\)
=>\(\widehat{HNP}=\widehat{HPN}\)
=>ΔHNP cân tại H
=>HN=HP
c: Xét ΔQNH và ΔQPH có
QN=QP
NH=PH
QH chung
Do đó: ΔQNH=ΔQPH
=>\(\widehat{QNH}=\widehat{QPH}\)
Ta có: QN=QP
=>Q nằm trên đường trung trực của NP(1)
Ta có: HN=HP
=>H nằm trên đường trung trực của NP(2)
Từ (1),(2) suy ra QH là đường trung trực của NP
=>QH\(\perp\)NP