Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
góc IAB chung
=>ΔAIB đồng dạng vơi ΔAEC
b: ΔAIB đồng dạng với ΔAEC
=>AI/AE=AB/AC
=>AI/AB=AE/AC
=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC
c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có
góc FAC=góc ICB
=>ΔFAC đồng dạng với ΔICB
=>AF/IC=CA/CB
=>AF*CB=CA*IC
=>AB*AE+AF*CB=AC^2

Từ D kẻ DH vuông góc với AC (H thuộc AC)
Xét \(\Delta AHD\)và \(\Delta AFC\:\)có:
\(\widehat{AHD}=\widehat{AFC\:}=90^0\)
\(\widehat{HAD}\) chung
suy ra: \(\Delta AHD~\Delta AFC\:\)
\(\Rightarrow\)\(\frac{AH}{AF}=\frac{AD}{AC}\)
\(\Rightarrow\)\(AD.AF=AH.AC\) (1)
Xét \(\Delta AEC\) và \(\Delta CHD\) có:
\(\widehat{AEC}=\widehat{CHD}=90^0\)
\(\widehat{EAC}=\widehat{HCD}\) (slt do ABCD là hình bình hành nên AB//CD)
suy ra: \(\Delta AEC~\Delta CHD\)
\(\Rightarrow\)\(\frac{AE}{CH}=\frac{AC}{CD}\)
\(\Rightarrow\)\(AE.CD=CH.AC\)
mà \(CD=AB\) (do ABCD là hình bình hành)
\(\Rightarrow\)\(AB.AE=CH.AC\)
Lấy (1) + (2) theo vế ta được:
\(AD.AF+AB.AE=AH.AC+HC.AC=AC^2\) (đpcm)
Dựng BG ⊥ AC.
Xét ΔBGA và ΔCEA, ta có:
∠ (BGA) = ∠ (CEA) = 90 0
∠ A chung
⇒ △ BGA đồng dạng △ CEA(g.g)
Suy ra:
AB.AE = AC.AG (1)
Xét △ BGC và △ CFA, ta có:
∠ (BGC) = ∠ (CFA) = 90 0
∠ (BCG) = ∠ (CAF) (so le trong vì AD //BC)
△ BGC đồng dạng △ CFA (g.g)
Suy ra: ⇒ BC.AF = AC.CG
Mà BC = AD (tính chất hình bình hành)
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG

Dựng BG ⊥ AC.
Xét ΔBGA và ΔCEA, ta có:
∠ (BGA) = ∠ (CEA) = 90 0
∠ A chung
⇒ △ BGA đồng dạng △ CEA(g.g)
Suy ra:
AB.AE = AC.AG (1)
Xét △ BGC và △ CFA, ta có:
∠ (BGC) = ∠ (CFA) = 90 0
∠ (BCG) = ∠ (CAF) (so le trong vì AD //BC)
△ BGC đồng dạng △ CFA (g.g)
Suy ra: ⇒ BC.AF = AC.CG
Mà BC = AD (tính chất hình bình hành)
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
AB.AE + AD.AF= AC(AG + CG)
Mà AG + CG = AC nên AB.AE + AD.AF = A C 2
Xét ΔCEB vuông tại E và ΔCFD vuông tại F có
\(\widehat{B}=\widehat{D}\)
Do đó: ΔCEB~ΔCFD
=>\(\dfrac{CE}{CF}=\dfrac{CB}{CD}=\dfrac{AD}{CD}\)
=>\(\dfrac{CE}{DA}=\dfrac{CF}{CD}\)
=>\(\dfrac{AD}{CE}=\dfrac{DC}{CF}\)
Xét tứ giác AECF có \(\widehat{AEC}+\widehat{AFC}+\widehat{FAE}+\widehat{FCE}=360^0\)
=>\(\widehat{BAD}+\widehat{FCE}=360^0-90^0-90^0=180^0\)
mà \(\widehat{BAD}+\widehat{ADC}=180^0\)(ABCD là hình bình hành)
nên \(\widehat{ADC}=\widehat{FCE}\)
Xét ΔADC và ΔECF có
\(\dfrac{AD}{EC}=\dfrac{DC}{CF}\)
\(\widehat{ADC}=\widehat{ECF}\)
Do đó: ΔADC~ΔECF