Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau

cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0

A B C D O E F
a) Ta có BD = BA \(\Rightarrow\)tam giác ABD cân tại B
Gọi giao điểm của AD với BE là O
Xét tam giác ABO và tam giác DBO có :
AB = BD
\(\widehat{ABO}=\widehat{DBO}\)( BE là phân giác góc B )
Chung cạnh BO
\(\Rightarrow\) tam giác ABO = tam giác DBO ( c-g-c )
\(\Rightarrow\widehat{AOB}=\widehat{DOB}\)
Mà \(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )
\(\Rightarrow AD\perp BE\)
b) Xét tam giác BAE và tam giác BDE có :
AB = BD
\(\widehat{ABE}=\widehat{DBE}\)
Chung BE
\(\Rightarrow\) tam giác BAE = tam giác BDE ( c-g-c )
\(\Rightarrow EA=ED\)
c) ta có tam giác AEB = tam giác DEB ( câu b )
\(\Rightarrow\widehat{EAB}=\widehat{EDB}=90^o\)
Mà \(\widehat{EDB}+\widehat{EDC}=180^o\)
\(\Rightarrow\widehat{EDC}=\widehat{EDB}=90^o\)
Xét tam giác AFE và tam giác DCE có :
\(\widehat{EAF}=\widehat{EDC}\left(=90^o\right)\)
AF = DC
AE = ED ( câu b )
\(\Rightarrow\)tam giác AFE = tam giác DCE ( c - g - c )
\(\Rightarrow EF=EC\)
d) Ta có AB = BD
AF = DC
\(\Rightarrow AB+AF=BD+DC\)
\(\Leftrightarrow BF=BC\)
\(\Rightarrow\)Tam giác BFC cân tại B
Mà BE là phân giác góc FBC ( là đỉnh tam giác cân FBC )
\(\Rightarrow\)BE là đường cao tam giác FBC
Lại có \(CA\perp BF\)
CA và BE cắt nhau tại E
\(\Rightarrow\)E là trực tâm tam giác FBC
Mà \(\widehat{EDC}=\widehat{EDB}=90^o\Rightarrow ED\perp BC\)
\(\Rightarrow\)D ; E ; F thẳng hàng

a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)

Câu a,b: dễ bạn tự làm nhé
c) Ta có tam giác BAE = tam giác BDE ( cm b)
=> góc CAB = góc BDF (2 góc t/ư)
Mà góc CAB = 90*( vì tam giác ABC vuông tại A)
=> góc BDF =90*
\(\Rightarrow\hept{\begin{cases}ED\perp BC\\FD\perp BC\end{cases}}\)(ĐN)
=> D, E, F thẳng hàng ( cùng \(\perp\)BC)

3 5 B A C E D
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )
\(\Rightarrow3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )
b ) Xét 2 \(\Delta\)vuông ABE và DBE có :
\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)
\(AB=DB\left(gt\right)\)
BE : cạnh chung
Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)
Hay BE là tia phân giác của \(\widehat{ABC}\)
c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)
\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )
+ Xét \(\Delta DEC\)vuông tại D (gt) có :
Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )
\(\Rightarrow EC>DE\)
Mà \(DE=AE\left(cmt\right)\)
\(\Rightarrow EC>AE\)
Hay \(AE< EC\)
d ) Vì \(AB=DB\left(gt\right)\)
\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)
+ Vì \(AE=DE\left(cmt\right)\)
\(\Rightarrow E\)thuộc đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)
Chúc bạn học tốt !!!
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
ΔBAD cân tại B
mà BE là đường phân giác
nên BE\(\perp\)AD
b: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
=>EA=ED
c: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>ED\(\perp\)BC tại D
Xét ΔEAF vuông tại A và ΔEDC vuông tại D có
EA=ED
AF=DC
Do đó: ΔEAF=ΔEDC
=>EF=EC
d: ΔEAF=ΔEDC
=>\(\widehat{AEF}=\widehat{DEC}\)
=>\(\widehat{AEF}+\widehat{AED}=180^0\)
=>F,E,D thẳng hàng