Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
a)Xét tam giác AHB và tam giác AHC,có
AB=AC (gt)
Góc B=Góc C(hai góc ở đáy của tam giác ABC)
AH là cạnh chung
Do đó tam giác AHB= tam giác AHC(c.g.c)
b)Vì tam giác AHB=tam giác AHC(câu a)
suy ra góc AHB=góc AHC (hai góc tương ứng)
lại có Góc AHB+AHC=1800(hai góc kề bù)mà Góc AHB=AHC (cmt)
suy ra Góc AHB=900
suy ra AH vuông góc BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABH=ΔACH(cmt)
nên BH=CH(hai cạnh tương ứng)
c) Xét ΔHIB vuông tại I và ΔHKC vuông tại K có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔHIB=ΔHKC(cạnh huyền-góc nhọn)
@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
Bạn tự vẽ hình nhé.
a/ Xét tam giác AHB và tam giác AHC có:
AB = AC (vì tam giác ABC cân tại A)
góc ABC = góc ACB (vì tam giác ABC cân tại A)
AH: cạnh chung
=> tam giác AHB = tam giác AHC (c.g.c)
Note: Câu a còn có 2 cách khác nữa, cần inbox mình :)
b/ Ta có tam giác ABC cân tại A => AH vừa là đường cao vừa là trung tuyến
=> HB = HC = BC / 2 = 10 / 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
AH^2 + BH^2 = AB^2 (pytago)
AH^2 + 5^2 = 13^2 (Vì: 169 - 25 = 144)
=> AH^2 = 144
=> AH = \(\sqrt{144}\)= 12 (cm)
c/ Ta có:
AH vuông góc BC (gt)
CE vuông góc BC (gt)
=> CE // AH
a) Xét tam giác vuông AHB và tam giác vuông AHC có
AB=AC( vì tam giác ABC cân tại A)
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\) ( 2 cạnh góc vuông)
b) Có \(\Delta AHB=\Delta AHC\)
=>BH=HC
=>H là trung điểm của BC
=>BH=BC/2=10/2=5(cm)
Xét tam giác AHB vuông tại H có
\(AB^2=AH^2+BH^2\)
=>132=AH2+52
=>AH2=132-52=144
=>AH=12
Vậy AH=12 cm)
Có \(AH⊥BC,CE⊥BC\)
=>CE//AH( quan hệ giữa tính vuông góc và song song)