\(\sqrt{x^2-2x+5}+\sqrt{x^2-12x+136}\ge13\forall x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

28 tháng 7 2017

1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)

\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)

\(\Leftrightarrow4x=10\)

\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

2) \(x^2-4x+5\)

\(=-(4x-x^2-5 )\)

\(= -[-(x^2-4x)-5 ]\)

\(=-[ -(x^2-2x.2+4-4)-5 ]\)

\(= -[-(x-2)^2+4-5 ]\)

\(= -[-(x-2)^2-1 ]\)

\(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)

\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)

\(\Rightarrow x^2-4x+5>0\)\(\forall x\)

2

\(x^2-4x+5=x^2-4x+4+1\\ =\left(x-2\right)^2+1>0\)

8 tháng 10 2018

a, Sửa đề:

-x2-2x-2

=-(x2+2x+2)

=-(x2+2x+1+1)

=-[(x+1)2+1]<0\(\forall\)x

b, -x2-6x-11

=-(x2+6x+11)

=-(x2+2.x.3+32+2)

=-[(x+3)2+2]<0\(\forall\)x

Đúng tick nha,oaoa

8 tháng 10 2018

a, -x - 2x - 2

= -(x+2x+1)-1

= -(x+1)2 -1

Có (x + 1)2 ≥0 ⇒- (x + 1) ≤ 0 ⇒ -(x + 1)2 - 1≤ -1

Do đó - x - 2x - 2 < 0 ∀ x

b, -x2 - 6x - 11

= -(x2 + 2.3.x+ 32)-2

= -(x+3)2 - 2

Có (x + 3)2 ≥0 ⇒- (x + 3) ≤ 0 ⇒ -(x + 3)2 - 2 ≤ -2

Do đó -x2 - 6x - 11 <0 ∀ x

6 tháng 7 2021

Ta có A = 2x2 + 8x  + 15 = 2x2 + 8x + 8 + 7 

 = 2(x2 + 4x + 4) + 7 = 2(x + 2)2 + 7 \(\ge7>0\)

b) Ta có A = x2 - 2x + y2 + 4y + 6 

 =(x2 - 2x  +1) + (y2 + 4y + 4) + 1

= (x - 1)2 + (y + 2)2 + 1 \(\ge1>0\)

29 tháng 2 2020

Bài 1 :

\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)

\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)

\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)

Áp dụng bất đẳng thức Cô - si cho 2 số không âm

\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\left(1\right)\)

\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)

Theo đề bài ta có : \(x+y\ge10\) suy ra

\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\left(3\right)\)

Cộng (1) ; (2) và (3) vế với vế ta được :
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)

Dấu " = " xay ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=25\\y^2=25\end{matrix}\right.\)

Vì x ; y dương nên \(\left(x;y\right)=\left(5;5\right)\)

29 tháng 2 2020

Bài 2 :

Đặt \(x=a+b=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow x^3=2+\sqrt{5}+2-\sqrt{5}+\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.x\)

\(\Leftrightarrow x^3=4+\sqrt[3]{4-5}.x\)

\(\Leftrightarrow x^3=4-3x\)

\(\Leftrightarrow x^3+3x-4=0\)

\(\Leftrightarrow x^3-x^2+x^2-x+4x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)

\(x^2+x+4=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

Nên \(x-1=0\Leftrightarrow x=1\)

Vậy \(x=a+b=1\)

\(\Rightarrow\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\left(đpcm\right)\)

Chúc bạn học tốt !!

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

a)

ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)

\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.

b)

ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)

\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)

\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

e)

ĐKXĐ: \(x\geq \frac{5}{3}\)

PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)

\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)

\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)

\(\Leftrightarrow 4=(x+2)(2x-3)\)

\(\Leftrightarrow 2x^2+x-10=0\)

\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=2$

f) Bạn xem lại đề.

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#