\(\sqrt{a}+\sqrt{b}+\sqrt{c}>\sqrt{a+b+c}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Bình phương hai vế, ta có : 

\(a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\ge a+b+c\)

\(\Leftrightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\ge0\)( luôn đúng )

Dấu "=" xảy ra khi a = b = c = 0

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

4 tháng 9 2016

Ta có a + b + \(2\sqrt{ab}\)> c

<=> \(2\sqrt{ab}\)> 0 (đúng)

Ta có a3 + b\(2ab\sqrt{ab}\)> c3 = a+ b+ 3ab(a + b)

<=> ab(\(2\sqrt{ab}\)- 3a - 3b) >0 (sai)

Vậy cái thứ 2 là dấu ngược lại mới đúng

23 tháng 7 2019

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm ) 

22 tháng 6 2018

a) Ta có:

\(\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}\right)^2+2\sqrt{a}.\sqrt{b}+\left(\sqrt{b}\right)^2=a+2\sqrt{a}.\sqrt{b}+b\)

\(\left(\sqrt{a+b}\right)^2=a+b\)

\(a+2\sqrt{a}.\sqrt{b}+b>a+b\) nên \(\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\). \(\Rightarrow\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

24 tháng 5 2018

\(\sqrt{\frac{a}{c+b}}=\frac{a}{\sqrt{a\left(c+b\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

tương tự : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)(ĐPCM)

9 tháng 6 2017

a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)

<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)

<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)

<=>\(a+b\ge2\sqrt{ab}\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)

17 tháng 6 2018

a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)

\(\Leftrightarrow2n+1=1\left(2n+1\right)\)

\(\Leftrightarrow2n+1=2n+1\)

\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

17 tháng 6 2018

Câu b) ý 2:

Áp dụng BĐT cô si ta có :

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)