\(\sqrt{a^{2} +b^{2} }\) ≥ \(\dfrac{a +b}{\sqrt{2}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{a^2+b^2}>=\dfrac{a+b}{\sqrt{2}}\)

=>\(\sqrt{2a^2+2b^2}>=a+b\)

=>\(2a^2+2b^2>=\left(a+b\right)^2=a^2+2ab+b^2\)

=>\(a^2-2ab+b^2>=0\)

=>\(\left(a-b\right)^2>=0\)(luôn đúng)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

26 tháng 5 2019

Hỏi đáp Toán

30 tháng 5 2019

=\(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)-\(\frac{2b}{a-b}\)

=\(\frac{\sqrt{a}^2+\sqrt{ab}-\sqrt{ab}+\sqrt{b}^2}{a-b}\)-\(\frac{2b}{a-b}\)

=\(\frac{a+b}{a-b}\)-\(\frac{2b}{a-b}\)

=\(\frac{a+b-2b}{a-b}\)

=\(\frac{a-b}{a-b}\)

=1

mong là đúng đừng trách mình nếu sai nhé ^^

Bài 1: Giải các phương trình, hệ phương trình sau: a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\) b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\) c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\) d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\) e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\) f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\) Bài 2: a) Tìm nghiệm nguyên của phương trình:...
Đọc tiếp

Bài 1: Giải các phương trình, hệ phương trình sau:

a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\)

b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\)

c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\)

d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\)

e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\)

f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\)

Bài 2: a) Tìm nghiệm nguyên của phương trình: \(3x^2-2y^2-5xy+x-2y-7=0\)

b) Cho các số thực a, b thỏa mãn căn bậc \(\sqrt[3]{a}+\sqrt[3]{b} =\sqrt[3]{b-\dfrac{1}{4}}\). CMR: \(-1< a <0\)

c) Tìm số nguyên a, b, c thỏa: \(a+b+c=0\), \(ab+bc+ca=3\)

d) Với k là số nguyên dương, chứng minh rằng không tồn tại các số nguyên a,b,c khác 0 sao cho \(a+b+c=0\), \(ab+bc+ca+2^k=0 \)

Bài 3: Cho tứ giác ABCD nội tiếp đường tròn tâm O. Đường thẳng vuông góc với AD tại A cắt BC tại E. Đường thẳng vuông góc với AB tại A cắt CD tại F. Chứng minh: O, E, F thẳng hàng.

Bài 4: Cho hình thang ABCD vuông tại A và B, M là trung điểm AB. Đường thẳng qua A vuông góc với MD cắt đường thẳng qua B vuông góc với MC tại N. Chứng minh rằng: MN vuông góc CD.

12
5 tháng 6 2018

Câu 1a thì được nè :v

( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2

⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2

⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)

Đặt : 12x + 1 = a , ta có :

( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48

⇔ ( a2 + 3a)( a2 + 3a +2) = 48

Đặt : a3 + 3a = t , ta có :

t( t +2) =48

⇔ t2 + 2t - 48 = 0

⇔ t2 - 6t + 8t - 48 = 0

⇔ t( t - 6) + 8( t - 6) = 0

⇔ ( t - 6)( t + 8) = 0

⇔ t = 6 hoặc t = -8

Tự thế vào mà tìm a sau đó suy ra x nha

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Bài 1:

b)

HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Lấy PT(1) trừ 2PT(2) thu được:

\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)

\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)

Thay vào thu được \(\frac{x}{y}=-1\)

Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:

\(X^2-2X-1=0\)

\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)

Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)

15 tháng 11 2018

Minh bi nham dau bai, chi co 1 thua so \(\dfrac{2}{x}\) thoi nhe!

Bài 1: Tính

a) Ta có: \(\left(\sqrt{3}+2\right)^2\)

\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)

\(=3+4\sqrt{3}+4\)

\(=7+4\sqrt{3}\)

b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)

\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)

\(=-\left(2-2\sqrt{2}+1\right)\)

\(=-\left(3-2\sqrt{2}\right)\)

\(=2\sqrt{2}-3\)

Bài 2: Tính

a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)

\(=\frac{1}{2}\cdot10-\frac{5}{2}\)

\(=5-\frac{5}{2}\)

\(=\frac{5}{2}\)

b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)

\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\frac{2}{4}\cdot\frac{1}{5}\)

\(=\frac{1}{10}\)

Bài 3: So sánh

a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)

\(\sqrt{18}>\sqrt{12}\)(Vì 18>12)

nên \(3\sqrt{2}>2\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)

\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)

\(=225-60\sqrt{10}+40\)

\(=265-60\sqrt{10}\)

\(=135+130-60\sqrt{10}\)

Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)

Ta có: \(130-60\sqrt{10}\)

\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)

\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)

\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)

\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)

\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)

hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

9 tháng 9 2020

phần a của 3 bài đều easy mà cả 3 bài đều easy

4 tháng 10 2017

đừng tag tui, tui k làm đâu

4 tháng 10 2017

bạn biết làm ko chỉ mình với

4 tháng 7 2019

b1. a)

Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10

=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102

2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10

5 + 2 căn 6 lớn hơn hoặc bằng 10

2 căn 6 lớn hơn hoặc bằng 5

( 2 căn 6 )2 lớn hơn hoặc bằng 52

4 * 6 lớn hơn 25

24 lớn hơn hoặc bằng 25 (sai)

Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10

24 tháng 8 2019

1, ABC△ABC vuông có ˆA=900A^=900 , ˆB=600B^=600 và b = 10 thì độ dài a là :

A. a = 153153

B. a = 103103

C. a = 20332033

D. a = 203203

2, ABC△ABC vuông có ˆA=900,ˆC=600A^=900,C^=600 và b = thì độ dài b' là :

A. b' = 8

B. b' = 6

C. b' = 6363

D. b' = 33

24 tháng 8 2019

1,C

2,B

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12