Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(VT=\sqrt{14+2\sqrt{13}}-\sqrt{14-2\sqrt{13}}\)
=\(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{\left(\sqrt{13}-1\right)^2}=\sqrt{13}+1-\left(\sqrt{13}-1\right)\)
\(=\sqrt{13}+1-\sqrt{13}+1=2=VP\left(đpcm\right)\)
b. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{5-2\sqrt{6}}-\sqrt{2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{2}\)
\(=2+\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{2}=2+\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{2}\)
\(=2=VP\left(đpcm\right)\)
\(1.\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\text{ |}3\sqrt{2}-\sqrt{3\text{ }}\text{ |}=3\sqrt{2}-\sqrt{3}\)\(2.\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{9-2.3\sqrt{5}+5}+\sqrt{9+2.3\sqrt{5}+5}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}=\text{ |}3-\sqrt{5}\text{ |}+\text{ |}3+\sqrt{5}\text{ |}=6\)\(3.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2.\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{ |}2\sqrt{2}+\sqrt{5}\text{ |}+\text{ |}2\sqrt{2}-\sqrt{5}\text{ |}=4\sqrt{2}\)\(4.\) Tương tự nhé bạn.
Bn ơi câu 1 cái chỗ dấu bằng thứ 1 ák lm v đc ko
\(\sqrt{21-6\sqrt{6}}=\)\(2.\sqrt{18}\sqrt{3}\)
\(1.\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{5-2.\sqrt{2}.\sqrt{5}+2}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\text{|}\sqrt{5}-\sqrt{2}\text{|}-\text{|}\sqrt{5}+\sqrt{2}\text{|}=-2\sqrt{2}\)\(2.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{|}2\sqrt{2}+\sqrt{5}\text{|}+\text{|}2\sqrt{2}-\sqrt{5}\text{|}=4\sqrt{2}\)\(3.\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{5}\right)\text{|}\sqrt{5}-\sqrt{2}\text{|}=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
Bài làm:
Đặt \(A=\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}\)
\(\Leftrightarrow A^2=\left(\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}\right)^2\)
\(=7-\sqrt{13}-2\sqrt{\left(7-\sqrt{13}\right)\left(7+\sqrt{13}\right)}+7+\sqrt{13}\)
\(=14-2\sqrt{49-13}\)
\(=14-2\sqrt{36}=14-2.6=14-12=2\)
\(\Rightarrow A=\sqrt{2}\)
Thay vào ta được:
\(\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}+\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
Đặt \(A=\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\Rightarrow A^2=7+\sqrt{13}+7-\sqrt{13}+2\sqrt{\left(7+\sqrt{13}\right)\left(7-\sqrt{13}\right)}=14+2\sqrt{49-13}=14+2\sqrt{36}=14+12=26\Rightarrow A=\pm\sqrt{26}\)Mà \(\left\{{}\begin{matrix}\sqrt{7+\sqrt{13}}>0\\\sqrt{7-\sqrt{13}}>0\end{matrix}\right.\)⇒\(\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}>0\Rightarrow A>0\)
Vậy \(A=\sqrt{26}\Rightarrow\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}=\sqrt{26}\)
b: \(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)
c: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)
d: \(=\dfrac{\sqrt{18-2\sqrt{17}}-\sqrt{18+2\sqrt{17}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{17}-1-\sqrt{17}-1}{\sqrt{2}}=-\sqrt{2}\)
Lời giải:
a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)
\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)
\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)
b)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)
\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)
\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)
Lời giải:
a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)
\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)
\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)
b)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)
\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)
\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)
=> \(A^2=13+\sqrt{7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7+....}}}}}\)
=>\(\left(A^2-13\right)^2=7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7...}}}}\)
=>\(\left(A^2-13\right)^2=7+A\)
Đến đây tách ra giải PT bậc 4 nha!
đặt
\(A=\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\)
=>\(\sqrt{2}A=\sqrt{2}\sqrt{7+\sqrt{13}}+\sqrt{2}\sqrt{7-\sqrt{13}}\)
\(=\sqrt{14+2\sqrt{13}}+\sqrt{14-2\sqrt{13}}\)
\(=\sqrt{13+2\sqrt{13}+1}+\sqrt{13-2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}+1\right)^2}+\sqrt{\left(\sqrt{13}-1\right)^2}\)
\(=\sqrt{13}+1+\sqrt{13}-1=2\sqrt{13}\)
=>\(A=\frac{2\sqrt{13}}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{2}\sqrt{13}}{\sqrt{2}}=\sqrt{2}\sqrt{13}=\sqrt{26}\)
suy ra : ĐPCM