\(\sqrt{7}\) là số vô tỷ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

giả sử √7 là số hữu tỉ 
=> √7 = p/q , với p, q thuộc N*, (p,q) = 1 
=> 7 = p²/q² => q² = p²/7 => p² chia hết cho 7, mà 7 nguyên tố => p chia hết cho 7 
đặt p = 7n, thay vào trên ta có: q² = 49n²/7 = 7n² => n² = q²/7 
=> q² chia hết cho 7, do 7 nguyên tố => q chia hết cho 7 
thấy p và q đều chia hết cho 7: vô lí do giả thiết p, q nguyên tố cùng nhau 

Vậy √7 là số vô tỉ 

google nghen!

27 tháng 8 2017

Lê Minh Cường

Cm \(\sqrt{5}\)là số vô tỉ

    Giải

Giả sử \(\sqrt{5}\)là số vô tỉ thì khi đó \(\sqrt{5}\) được viết dưới dạng \(\frac{m}{n}\)

\(\sqrt{5}=\frac{m}{2}\Rightarrow5=\frac{m^2}{n^2}\)   ( * ) 

Ở đẵng thức ( * ) cm m2 \(⋮\) 5 => m \(⋮\)5

Đặt m = 5k ta có : m2 = 25k2        ( **) 

Từ ( * ) và ( ** ) suy ra : 

5n2 = 25k2 => n2 = 5k2                           ( ***) 

Đẳng thức ( ***) cm n2 \(⋮\)5 mà 5 là số nguyên tố nên n \(⋮\)5

Vậy m,n chia hết cho 5 nên \(\frac{m}{n}\) chưa thể tối giản ( trái với gt ) nên \(\sqrt{5}\) là số hữu tỉ. 

P/s : có 1 câu hỏi mà bảo dài dòng tek!?

27 tháng 8 2017

VD: \(\sqrt{5}\)là số hữu tỉ

\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in z;b\ne0\right)\)

Tổng quát VD \(\left(a;b\right)=1\)

\(\Rightarrow5=\frac{a^2}{b^2}\)

\(\Leftrightarrow a^2=5b^2\)

\(\Rightarrow a^2⋮5\)

Ta có : 5 số nguyên tố

\(\Rightarrow a⋮5\)

\(\Rightarrow a^2⋮25\)

\(\Rightarrow5b^2⋮25\)

\(\Rightarrow b^2⋮5\)

\(\Rightarrow b⋮5\)

\(\Rightarrow\left(a;b\right)\ne1\)

\(\Rightarrow\)giả sử bị sai

\(\Rightarrow\sqrt{5}\)là số vô tỷ

7 tháng 1 2019

bn nè căn 7 là số vô tỉ vì căn 7 =2,tá lả tùm lum tùm lum tá lả...............

30 tháng 11 2020

- Giả sử \(\sqrt{7}\)là số hữu tỉ 

\(\Rightarrow\sqrt{7}=\frac{m}{n}\)tối giản 

\(\Rightarrow7=\frac{m^2}{n^2}\)hay \(7n^2=m^2\left(1\right)\)

Đẳng thức này chính tỏ \(m^2⋮7\)mà 7 là số nguyên tố => m chia hết cho 7 

- Đặt \(m=7k\left(k\in Z\right)\), ta có : \(m^2=49k^2\left(2\right)\) 

Từ (1) và (2) suy ra : \(7n^2=49k^2\)nên \(n^2=7k^2\left(3\right)\)

Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên nên \(n⋮7\)

- m và n cùng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản ( trái với giả thiết )

\(\Rightarrow\sqrt{7}\)không phải là số hữu tỉ , mà là số vô tỉ 

19 tháng 10 2017

 giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = 7b² 
=> a² ⋮ 7 
Vì số 7 là số nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49 
=> b² ⋮ 7 
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

Mình đánh trong Word nên phông hơi khác, thông cảm nha

5 tháng 12 2017
 

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7 = m/n 
⇒ 7 = m²/n² 
⇒ m² = 7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

24 tháng 4 2017

Vì 7 là số nguyên tố.

=>\(\sqrt{7}\)

là số thập phân vô hạn ko tuần hoàn.

=>Số trên là số vô tỉ.

tk mk nha các bn.

-chúc ai tk mk học giỏi-

24 tháng 4 2017

Vì 7 là số nguyên tố

=> \(\sqrt{7}\)là số thập phân vô hạn không tuần hoàn

=> số trên là vô tỉ

Đúng 100%

Đúng 100%

Đúng 100%

17 tháng 5 2019

https://olm.vn/hoi-dap/detail/13339180375.html

Tham khảo 

17 tháng 5 2019

Ta có:

\(\sqrt{7}=2.645751311\)

=>  ĐPCM

16 tháng 7 2016

tra google nhanh hơn đó

19 tháng 10 2016

Giả sử \(_{\sqrt{7}}\) là số hữu tỉ

\(\Rightarrow\sqrt{7}\)=\(\frac{a}{b}\) ( \(a,b\in Z;b\ne0\))

Giả sử (a;b)=1

\(\Rightarrow7=\frac{a^2}{b^2}\)

\(\Rightarrow a^2=7b^2\)

\(\Rightarrow a\) chia hết cho 7

\(\Rightarrow a^2\)chia hết cho 49

\(\Rightarrow7b^2\)chia hết cho 49

\(\Rightarrow b^2\)chia hết cho 7

Mà \(\left(a;b\right)\ne1\) trái với giả sử

=> Giả sử sai

=> \(\sqrt{7}\) là số vô tỷ

18 tháng 8 2017

Giả sử \(\sqrt{7}\) là số hữu tỉ 

=> \(\sqrt{7}\) = \(\frac{a}{b}\) (a,b ∈ Z ; b ≠ 0) 

Không mất tính tổng quát giả sử (a;b) = 1 

=> 7 = \(\frac{a^2}{b^2}\)

<=> \(a^2\)\(7b^2\)

=> \(a^2⋮7\)

7 nguyên tố 

=> \(a⋮7\)

=> \(a^2⋮49\)

=> \(7b^2⋮49\)

=> \(b^2⋮7\)

=> \(b⋮7\)

=> (a;b) \(\ne\)1 (trái với giả sử) 

=> giả sử sai 

=> \(\sqrt{7}\)là số vô tỉ