Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử √7 là số hữu tỉ
=> √7 = p/q , với p, q thuộc N*, (p,q) = 1
=> 7 = p²/q² => q² = p²/7 => p² chia hết cho 7, mà 7 nguyên tố => p chia hết cho 7
đặt p = 7n, thay vào trên ta có: q² = 49n²/7 = 7n² => n² = q²/7
=> q² chia hết cho 7, do 7 nguyên tố => q chia hết cho 7
thấy p và q đều chia hết cho 7: vô lí do giả thiết p, q nguyên tố cùng nhau
Vậy √7 là số vô tỉ
google nghen!
Lê Minh Cường
Cm \(\sqrt{5}\)là số vô tỉ
Giải
Giả sử \(\sqrt{5}\)là số vô tỉ thì khi đó \(\sqrt{5}\) được viết dưới dạng \(\frac{m}{n}\)
\(\sqrt{5}=\frac{m}{2}\Rightarrow5=\frac{m^2}{n^2}\) ( * )
Ở đẵng thức ( * ) cm m2 \(⋮\) 5 => m \(⋮\)5
Đặt m = 5k ta có : m2 = 25k2 ( **)
Từ ( * ) và ( ** ) suy ra :
5n2 = 25k2 => n2 = 5k2 ( ***)
Đẳng thức ( ***) cm n2 \(⋮\)5 mà 5 là số nguyên tố nên n \(⋮\)5
Vậy m,n chia hết cho 5 nên \(\frac{m}{n}\) chưa thể tối giản ( trái với gt ) nên \(\sqrt{5}\) là số hữu tỉ.
P/s : có 1 câu hỏi mà bảo dài dòng tek!?
VD: \(\sqrt{5}\)là số hữu tỉ
\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in z;b\ne0\right)\)
Tổng quát VD \(\left(a;b\right)=1\)
\(\Rightarrow5=\frac{a^2}{b^2}\)
\(\Leftrightarrow a^2=5b^2\)
\(\Rightarrow a^2⋮5\)
Ta có : 5 số nguyên tố
\(\Rightarrow a⋮5\)
\(\Rightarrow a^2⋮25\)
\(\Rightarrow5b^2⋮25\)
\(\Rightarrow b^2⋮5\)
\(\Rightarrow b⋮5\)
\(\Rightarrow\left(a;b\right)\ne1\)
\(\Rightarrow\)giả sử bị sai
\(\Rightarrow\sqrt{5}\)là số vô tỷ
bn nè căn 7 là số vô tỉ vì căn 7 =2,tá lả tùm lum tùm lum tá lả...............
- Giả sử \(\sqrt{7}\)là số hữu tỉ
\(\Rightarrow\sqrt{7}=\frac{m}{n}\)tối giản
\(\Rightarrow7=\frac{m^2}{n^2}\)hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chính tỏ \(m^2⋮7\)mà 7 là số nguyên tố => m chia hết cho 7
- Đặt \(m=7k\left(k\in Z\right)\), ta có : \(m^2=49k^2\left(2\right)\)
Từ (1) và (2) suy ra : \(7n^2=49k^2\)nên \(n^2=7k^2\left(3\right)\)
Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên nên \(n⋮7\)
- m và n cùng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản ( trái với giả thiết )
\(\Rightarrow\sqrt{7}\)không phải là số hữu tỉ , mà là số vô tỉ
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = 7b²
=> a² ⋮ 7
Vì số 7 là số nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Mình đánh trong Word nên phông hơi khác, thông cảm nha
Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n
√7 = m/n
⇒ 7 = m²/n²
⇒ m² = 7n²
⇒ m² chia hết cho n²
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.
Vì 7 là số nguyên tố.
=>\(\sqrt{7}\)
là số thập phân vô hạn ko tuần hoàn.
=>Số trên là số vô tỉ.
tk mk nha các bn.
-chúc ai tk mk học giỏi-
Vì 7 là số nguyên tố
=> \(\sqrt{7}\)là số thập phân vô hạn không tuần hoàn
=> số trên là vô tỉ
Đúng 100%
Đúng 100%
Đúng 100%
Giả sử \(_{\sqrt{7}}\) là số hữu tỉ
\(\Rightarrow\sqrt{7}\)=\(\frac{a}{b}\) ( \(a,b\in Z;b\ne0\))
Giả sử (a;b)=1
\(\Rightarrow7=\frac{a^2}{b^2}\)
\(\Rightarrow a^2=7b^2\)
\(\Rightarrow a\) chia hết cho 7
\(\Rightarrow a^2\)chia hết cho 49
\(\Rightarrow7b^2\)chia hết cho 49
\(\Rightarrow b^2\)chia hết cho 7
Mà \(\left(a;b\right)\ne1\) trái với giả sử
=> Giả sử sai
=> \(\sqrt{7}\) là số vô tỷ
Giả sử \(\sqrt{7}\) là số hữu tỉ
=> \(\sqrt{7}\) = \(\frac{a}{b}\) (a,b ∈ Z ; b ≠ 0)
Không mất tính tổng quát giả sử (a;b) = 1
=> 7 = \(\frac{a^2}{b^2}\)
<=> \(a^2\)= \(7b^2\)
=> \(a^2⋮7\)
7 nguyên tố
=> \(a⋮7\)
=> \(a^2⋮49\)
=> \(7b^2⋮49\)
=> \(b^2⋮7\)
=> \(b⋮7\)
=> (a;b) \(\ne\)1 (trái với giả sử)
=> giả sử sai
=> \(\sqrt{7}\)là số vô tỉ