
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\sqrt[3]{a^3b}=\sqrt[3]{a^3}\sqrt[3]{b}=a\sqrt[3]{b}\)
b) \(\sqrt[3]{\dfrac{a}{b^2}}=\sqrt[3]{\dfrac{ab}{b^3}}=\dfrac{\sqrt[3]{ab}}{\sqrt[3]{b^3}}=\dfrac{1}{b}\sqrt[3]{ab}\)

Câu trên đề sai
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)
Vậy nó là số nguyên

Ta có:
\(\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\)
\(=\frac{5bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{5ac}{\sqrt{5bc\left(3ba+2ca\right)}}+\frac{5ab}{\sqrt{5ca\left(3cb+2ab\right)}}\)
\(\ge\frac{10bc}{5ab+3ac+2bc}+\frac{10ac}{5bc+3ba+2ca}+\frac{10ab}{5ca+3cb+2ab}\)
Đặt \(ab=x,bc=y,ca=z\)(cho dễ nhìn)
\(=\frac{10x}{2x+3y+5z}+\frac{10y}{2y+3z+5x}+\frac{10z}{2z+3x+5y}\)
\(=\frac{10x^2}{2x^2+3yx+5zx}+\frac{10y^2}{2y^2+3zy+5xy}+\frac{10z^2}{2z^2+3xz+5yz}\)
\(\ge\frac{10\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}=\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\)
Giờ ta cần chứng minh
\(\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\ge3\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)
Vậy ta có ĐPCM
alibaba nguyễn bạn trả lời đúng đấy! Nhưng để dễ hiểu hơn ta nên áp dụng tổ hợp BĐT AM-GM và Cauchy-Schwarz nhé!

Bài này dễ bạn à
áp dụng bđt Cô-si cho 3 số ta được
\(\sqrt[3]{\left(a+3b\right).1.1}\le\frac{a+3b+1+1}{3}\)
Tương tự bạn sẽ có VT\(\le\) \(\frac{a+3b+1+1+b+3c+1+1+c+3a+1+1}{3}\)\(=\frac{4\left(a+b+c\right)+6}{3}\)
Do \(a+b+c=\frac{3}{4}\)\(\Rightarrow VT\le\frac{4.\frac{3}{4}+6}{3}=3\)
dấu "=" khi a=b=c=\(\frac{1}{4}\)

Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)
Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)
hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)
Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)
\(\sqrt[3]{a^3b}=\sqrt[3]{a^3}.\sqrt[3]{b}=a\sqrt[3]{b}\)