\(\sqrt{2}+\sqrt{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

giả sử \(\sqrt{3}\)là số hữu tỉ

\(\Rightarrow\sqrt{3}=\frac{a}{b}\)               (a;b)=1

=>3=(a/b)2

=>3=a2/b2

=>a2=3b2 chia hết cho 3

=>a chia hết cho 3

=>a2 chia hết cho 9

=>b2 chia hết cho 3

=>b chia hết cho 3

=>(a;b)>1

=>trái giả thuyết

=>\(\sqrt{3}\in I\)

=>đpcm

giả sử \(\sqrt{7}\in Q\)

=>\(\sqrt{7}=\frac{m}{n}\)          (m;n)=1

=>7=(m/n)2

=>7=m2/n2

=>m2=7n2 chia hết cho 7

=>m chia hết cho 7

=>m2 chia hết cho 49

=>n2 chia hết cho 7

=>n chia hết cho 7

=>(m;n)>1

=>trái giả thuyết

\(\Rightarrow\sqrt{7}\in I\)

=>đpcm

2 tháng 9 2015

a) Giả \(\sqrt{3}\) sử là số hữu tỉ.

=>\(\sqrt{3}=\frac{a}{b}\)            (a,b)=1

=>\(\sqrt{3}^2=\frac{a}{b}^2\)

=>\(3=\frac{a^2}{b^2}\)

=>3.b2=a2

=>a2 chia hết cho 3

mà 3 là số nguyên tố.

=>a chia hết cho 3

=>a=3k

=>a2=(3k)2=9.k2

=>3.b2=9.k2

=>b2=3.k2

=>b2 chia hết cho 3

mà 3 là số nguyên tố

=>b chia hết cho 3

=>a,b chia hết cho 3

=>ƯC(a,b)=3

=>Trái giả thiết.

=>\(\sqrt{3}\)không phải là số hữu tỉ

=>\(\sqrt{3}\)là số vô tỉ

=>ĐPCM

 

10 tháng 9 2020

a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ

---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0

\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn

Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)

\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn

Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm

b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ

---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0

\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)

Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)

\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)

\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm

(Bài dài quá, giải mệt vler !!)

20 tháng 11 2015

li ke cho minh minh giai cho