Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}-\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)đpcm
a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
= \(-1+\sqrt{100}\)
= -1 +10
=9
b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1 (1)
Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)
Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(2-\sqrt{5}\right)-\left(\sqrt{5}-1\right)\)
\(=2-\sqrt{5}-\sqrt{5}+1\)
\(=3-2\sqrt{5}\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=|2-\sqrt{5}|-|\sqrt{5}-1|.\)
\(=\sqrt{5}-2-\sqrt{5}+1\)(Vì \(2=\sqrt{4}< \sqrt{5};1=\sqrt{1}< \sqrt{5}\))
\(=-1\)
\(\sqrt{5+2\sqrt{6}}+\sqrt{10-4\sqrt{6}}=\sqrt{2+2.\sqrt{2}\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{6}+6}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{6}\right)^2}\)
\(=|\sqrt{2}+\sqrt{3}|+|2-\sqrt{6}|\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{6}-2\)( Vì \(\sqrt{6}>\sqrt{4}=2\))
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\)
\(\Leftrightarrow x=10\)
ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)
\(\Leftrightarrow\sqrt{x}-2=3\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Rightarrow x=5^2=25\)
a)\(\frac{3\sqrt{6}-\sqrt{2}}{1-3\sqrt{3}}=\frac{3\sqrt{3}.\sqrt{2}-\sqrt{2}}{1-3\sqrt{3}}=\frac{\sqrt{2}.\left(3\sqrt{3}-1\right)}{-\left(3\sqrt{3}-1\right)}=-\sqrt{2}\)
b)\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}=\frac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2.\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{5}}{2}\)
c)\(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}\)
d)\(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{5^2.6}-\sqrt{6^2.5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\sqrt{5}-\sqrt{30}.\sqrt{6}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\left(\sqrt{5}-\sqrt{6}\right)}{\sqrt{5}-\sqrt{6}}=\sqrt{30}\)
e)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{2^2.3}-\sqrt{3^2.2}}{\sqrt{6}}=\frac{\sqrt{6}.\sqrt{2}-\sqrt{6}.\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{6}.\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}}=\sqrt{2}-\sqrt{3}\)
f)\(\frac{6\sqrt{2}-4}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{16}}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{2}.2\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}.\left(6-2\sqrt{2}\right)}{\sqrt{2}}=6-2\sqrt{2}\)
g)\(\frac{6-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{36}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.2\sqrt{3}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.\left(2\sqrt{3}-5\right)}{\sqrt{3}}=2\sqrt{3}-5\)
a, \(\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)
\(=\sqrt{17-2.3.2\sqrt{2}}-\sqrt{17+2.3.2\sqrt{2}}\)
\(=\sqrt{9-2.3.2\sqrt{2}+8}-\sqrt{9+2.3.2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(3+2\sqrt{2}\right)^2}=\left|3-2\sqrt{2}\right|-\left|3+2\sqrt{2}\right|\)
\(=3-2\sqrt{2}-3-2\sqrt{2}=-4\sqrt{2}\)
b, \(\sqrt{31-12\sqrt{3}}-\sqrt{31+12\sqrt{3}}\)
\(=\sqrt{31-2.2.3\sqrt{3}}-\sqrt{31+2.2.3\sqrt{3}}\)
\(=\sqrt{\left(3\sqrt{3}-2\right)^2}-\sqrt{\left(3\sqrt{3}+2\right)^2}=\left|3\sqrt{3}-2\right|-\left|3\sqrt{3}+2\right|\)
\(=3\sqrt{3}-2-3\sqrt{3}-2=-4\)
\(\left(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}\right)^2\)
\(=\sqrt[3]{4}+2\sqrt[3]{50}+5\sqrt[3]{5}+2\left(2\sqrt[3]{5}-\sqrt[3]{50}-5\sqrt[3]{4}\right)\)
\(=9\sqrt[3]{5}-9\sqrt[3]{4}=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\)
\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
Vậy \(A\in Z\)
Làm tương tự với B.
câu đầu bạn xem lại đề đi nha
các phần còn lại
b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)
c)tính từng căn nha
\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)
\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)
\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)
thay vào tính C đc C=2
d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)
=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)
=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)
đề có bị sai k vậy
Đáp án của phép tính là -10.01903 mà!
Không bằng 3 đâu nha~