Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cần chứng minh:
\(\frac{2014}{\sqrt{2013}}+\frac{2013}{\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\frac{\sqrt{2013^3}+\sqrt{2014^3}}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\frac{\left(\sqrt{2013}+\sqrt{2014}\right)\left(2013-\sqrt{2013}.\sqrt{2014}+2014\right)}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\frac{2013-\sqrt{2013}.\sqrt{2014}+2014}{\sqrt{2013}.\sqrt{2014}}>1\)
\(\Leftrightarrow2013-2\sqrt{2013}.\sqrt{2014}+2014>0\)
\(\Leftrightarrow\left(\sqrt{2013}-\sqrt{2014}\right)^2>0\)đúng
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)
⇔\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)
Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)
Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)
Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)
* Cách 1:
\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)
\(=\sqrt{2013^2.\left(1+\frac{1}{2013^2}+\frac{1}{2014^2}\right)}\)
\(=2013.\left(1+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=2013+1-\frac{2013}{2014}\)
\(=2014-\frac{2013}{2014}\)
* Cách 2:
\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)
\(=\sqrt{\left(1+2013\right)^2-2.2013+\frac{2013^2}{2014^2}}\)
\(=\sqrt{2014^2-2.2013+\left(\frac{2013}{2014}\right)^2}\)
\(=\sqrt{\left(2014-\frac{2013}{2014}\right)^2}\)
\(=2014-\frac{2013}{2014}\)
Từ 2 cách trên ta suy ra:
\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}+\frac{2013}{2014}\)
\(=2014-\frac{2013}{2014}+\frac{2013}{2014}\)
\(=2014\)
Theo đề bài trên, ta có thể suy ra công thức tổng quát như sau:
\(\sqrt{1^2+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
(Chúc bạn học tốt và nhớ k cho mình với nhá!)
cái này trong sách vũ hữu bình đó bạn