\(n^6-n^4+2n^3+2n^2\) với \(n\in N\)và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

\(n^6-n^4+2n^3+2n^2\)

\(=\left(n^6-n^4\right)+\left(2n^3+2n^2\right)=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)

\(=\left(n^5-n^4\right)\left(n+1\right)+2n^2\left(n+1\right)\)

\(=\left(n^5-n^4+2n^2\right)\left(n+1\right)\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

\(=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\)

\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-n+1-n+1\right)\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Với mọi \(n\inℕ\)và \(n\ge1\), ta có:

\(n^2\left(n+1\right)^2=\left[n\left(n+1\right)\right]^2\)luôn là số chính phương.

Mà \(n^2-2n+2=\left(n-1\right)^2+1\)luôn không là số chính phương ( vì n>1; \(n\inℕ\))

Do đó  \(n^2\left(n+1\right)^2\left(n^2-2n+1\right)\)không phải là số chính phương với mọi \(n>1,n\inℕ\)

\(\Rightarrow n^6-n^4+2n^3+2n^2\)không phải là số chính phương với mọi \(n>1,n\inℕ\)

Vậy nếu \(n\inℕ,n>1\)thì số có dạng \(n^6-n^4+2n^3+2n^2\)không phải là số chính phương

4 tháng 3 2021

TÍNH CHẤT : Nếu tích của các số là một số chính phương thì mỗi số đều là một số chính phương.

19 tháng 2 2021

a) \(P=2+2^2+2^3+...+2^{2011}+2^{2012}\)

\(P=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2011}+2^{2012}\right)\)

\(P=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{2010}\left(2+2^2\right)\)

\(P=6+2^2\cdot6+...+2^{2010}\cdot6\)

\(P=6\cdot\left(1+2^2+...+2^{2010}\right)\) chia hết cho 6

=> P chia hết cho 6

19 tháng 2 2021

b) Ta có: \(A=n^4+2n^3+2n^2+2n+1\)

\(A=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)\)

\(A=n^2\left(n+1\right)^2+\left(n+1\right)^2\)

\(A=\left(n+1\right)^2\left(n^2+1\right)\)

Để A là số chính phương thì \(n^2+1\) cũng phải là số chính phương

Đặt \(n^2+1=x^2\left(x\inℤ\right)\)

\(\Rightarrow x^2-n^2=1\Leftrightarrow\left(x-n\right)\left(x+n\right)=1=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)

\(\Rightarrow x-n=x+n\Rightarrow n=0\)

Mà n > 0 => Không tồn tại n thỏa mãn

=> A không là số chính phương

=> đpcm

26 tháng 3 2018

Giải thế này được không nhỉ?

Ta có \(A=n^6-n^4+2n^3+2n^2=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^5-n^4+2n^2\right)\)

Mặt khác do \(n\in N;n>1\) nên

\((n^5-n^4+2n^2)-\left(n+1\right)=\left(n^5-n^4\right)+\left(n^2-n\right)+\left(n^2-1\right)>0\)Do vậy \(n^5-n^4+2>n+1\)

Vậy kết luận

26 tháng 3 2018

==" thế dữ kiện ko phải số chính phương để làm cái quái gì

\(A=n^4+2n^3+2n^2+2n+1\)

\(=\left(n^2\right)^2+2.n^2\left(n+1\right)+\left(n+1\right)^2-n^2\)

\(=\left(n^2+n+1\right)^2-n^2\)

\(=\left(n^2+n+1-n\right)\left(n^2+n+1+n\right)\)

\(=\left(n^2+1\right)\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\) không là số chính phương (đpcm)

31 tháng 1 2021

Vì 2n+1 là số CP lẻ => 2n+1 : 8 dư 1 => 2n chia hết cho 8 

 => n chia hết cho 4 => n chẵn => n+1 lẻ => n+1 : 8 dư1

=> n chia hết cho 8 (*)

ta có n+1+2n+1=3n+2  _(đồng dư) _ 2 (mod 3)

màn+1 và 2n+1  _(đồng dư)_  0(hoặc)1 (mod 3)

từ đó => n+1 và 2n+1 _(đồng dư)_ 1(mod 3)

=>n chia hết cho 3 (**)

từ (*) và (**) mà (3,8)=1 => n chia hết cho 24

=> đpcm

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ... Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)                     ( chứng minh bằng phương pháp quy nạp toán học)Giải: Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .Giả sử (1)...
Đọc tiếp

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ...

 Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)  

                   ( chứng minh bằng phương pháp quy nạp toán học)

Giải:

 Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .

Giả sử (1) đúng với n=k \(\left(k\in N,k\ge3\right)\) , tức là:

\(2^k>2k+1\)

Ta phải chứng minh \(2^{k+1}>2\left(k+1\right)+1\) hay \(2^{k+1}>2k+3\) (2)

Thật vậy: 

\(2^{k+1}>2.2^k\) , mà \(2^k>2k+1\) (theo giả thiết quy nạp)

Do đó: \(2^{k+1}>2\left(2k+1\right)=\left(2k+3\right)+\left(2k-1\right)>2k+3\) ( Vì 2k-1 > 0 )

Vậy (2) đúng với mọi \(k\ge3\)

 => \(2^n>2n+1\) với mọi số nguyên dương n và \(n\ge3\)

 

 

1
3 tháng 5 2017

sai:2k+1>2.2k

       2k+1=2.2k

sửa lại thì có thể đúng :v

30 tháng 1 2021

Đặt: n4 + 2n3 + 2n2+ n + 7 = k2 (k \(\in\)N)

<=> (n2 + n)2 + (n2 + n) + 7 = k2

<=> 4(n2 + n)2 + 4(n2 + n) + 28 = 4k2

<=> 4k2 - (2n2 + 2n + 1)2 = 27

<=> (2k - 2n2 - 2n - 1)(2k + 2n2 + 2n + 1) = 27

Do 2k + 2n2 + 2n + 1 > 2k - 2n2 - 2n - 1

Lập bảng

2k + 2n2 + 2n + 1 27 9 -1 -3
2k - 2n2 - 2n - 1 1 3 -27 -9
     
     

 (tự tính)