Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)
Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.
Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2
Kết quả trên chứng tỏ b chia hết cho 3.
Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy √3 là số vô tỉ.
b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a
Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 5√2 là số vô tỉ.
* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:
3 + √2 = b
Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 3 + √2 là số vô tỉ.
Giả sử có tồn tại 1 số hữu tỉ x;y sao cho \(\left(\frac{x}{y}\right)^2=7\) ( Với (x;y)=1 ; x;y là số nguyên )
Ta có
\(\frac{x^2}{y^2}=7\)
\(\Rightarrow\frac{x^2}{7}=y^2\)
Mà y là số nguyên
\(\Rightarrow x^2⋮7\)
\(\Rightarrow x^2⋮49\) ( Vì 7 là số nguyên tố )
Mặt khác \(x^2=7y^2\)
\(\Rightarrow7y^2⋮49\)
\(\Rightarrow y^2⋮7\)
=> \(ƯC\left(x;y\right)=7\)
Trái với giả thiết
=> \(\sqrt{7}\) là số vô tỉ
Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ
Bn tham khảo nè:
giả sử x + y = a với a là số hữu tỉ
=> y = a - x
mà a và x là hữu tỉ nên a - x cũng hữu tỉ
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n)
=> y cũng hữu tỉ
vô lý
Mọi số n không là số chính phương thì \(\sqrt{n}\)là số vô tỉ nên
\(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ
Suy ra \(\sqrt{2}+\sqrt{3}\)là số vô tỉ
Đặt \(x=\sqrt{2}+\sqrt{3}\)
Giả sử x là số hữu tỉ , nghĩa là \(x=\frac{p}{q}\left(p,q\in N,q\ne0\right)\)
Ta có : \(\frac{p}{q}=\sqrt{2}+\sqrt{3}\)
\(\Leftrightarrow\frac{p^2}{q^2}=\left(\sqrt{2}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\frac{p^2}{q^2}-5=2\sqrt{6}\) ( vô lí )
Vì \(\frac{p^2}{q^2}\) là số hữu tỉ và \(2\sqrt{6}\) là số vô tỉ
Vậy \(x=\sqrt{2}+\sqrt{3}\) không phải là số hữu tỉ
\(\Rightarrow x=\sqrt{2}+\sqrt{3}\) lá số vô tỉ
Chúc bạn học tốt !!!
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
Giả sử căn 3 không phải số vô tỉ suy ra:
tồn tại số m và n sao cho căn 3 = m/n (m,n là nguyên tố cùng nhau)
khi đó 3n^2 = m^2
=> m chia hết 3, đặt m=3p ( p là số nguyên)
thay m = 3p ta có
3n^2 = 9p^2
n^2 = 3p^2
=> n chia hết cho 3
=> m và n cùng chia hết cho 3
mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau
=> căn 3 là số vô tỉ
Giả sử \(\sqrt{3}\) là số hữu tỉ
\(\Rightarrow\sqrt{3}=\frac{m}{n}\) với m,n\(\in\)N,(m,n)=1
Suy ra:m2=3.n2(1) ,do đó m2 chia hết cho 3.Ta lại có 3 là số nguyên tố nên m chia hết cho 3 (2)
Đặt m=3k(k\(\in\)N) thay vào (1) ta được:9k2=3n2 nên 3k2=n2
Suy ra:n2 chia hết cho 3
\(\Rightarrow\)n chia hết cho 3(3)
Từ (2) và (3) suy ra m và n cùng chia hết cho 3,trái với (m,n)=1
Vậy \(\sqrt{3}\) không phải số hữu tỉ,do đó \(\sqrt{3}\) là số vô tỉ
bn nè căn 7 là số vô tỉ vì căn 7 =2,tá lả tùm lum tùm lum tá lả...............
- Giả sử \(\sqrt{7}\)là số hữu tỉ
\(\Rightarrow\sqrt{7}=\frac{m}{n}\)tối giản
\(\Rightarrow7=\frac{m^2}{n^2}\)hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chính tỏ \(m^2⋮7\)mà 7 là số nguyên tố => m chia hết cho 7
- Đặt \(m=7k\left(k\in Z\right)\), ta có : \(m^2=49k^2\left(2\right)\)
Từ (1) và (2) suy ra : \(7n^2=49k^2\)nên \(n^2=7k^2\left(3\right)\)
Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên nên \(n⋮7\)
- m và n cùng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản ( trái với giả thiết )
\(\Rightarrow\sqrt{7}\)không phải là số hữu tỉ , mà là số vô tỉ
Giả sử \(\sqrt{7}\)là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\)(tối giản)
Suy ra \(7=\frac{m^2}{n^2}\)hay 7n2=m2 (1)
Đẳng thức này chứng tỏ m2 chia hết 7.Mà 7 là số nguyên tố nên m chia hết 7.
Đặt m=7k (k thuộc Z),ta có m2=49k2 (2)
Từ (1) và (2) =>7n2=49k2 nên n2=7k2 (3)
Từ (3) ta lại có n2 chia hết 7 và vì 7 là số nguyên tố nên n chia hết 7
m và n cùng chia hết 7 \(\Rightarrow\frac{m}{n}\)ko tối giản,trái giả thiết.
Vậy \(\sqrt{7}\)là số vô tỉ
Giả sử 3 không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho 3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: 3 2 = a / b 2 hay a 2 = 3 b 2 (1)
Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.
Thay a = 3c vào (1) ta được: 3 c 2 = 3 b 2 hay b 2 = 3 c 2
Kết quả trên chứng tỏ b chia hết cho 3.
Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy 3 là số vô tỉ.