K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

13+23+...+103=102.(10+1)2 : 4 =4.52.112 : 4= 52.112=552. Là số chính phương

Quy tắc tính tổng có dạng 1^3+2^3+...+n^3 là n2.(n+1)2 : 4 hoặc (1+2+...+n)2

14 tháng 8 2016

thank

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Lời giải:
$P=1-3^2+3^4-3^6+...+3^{96}-3^{98}$

$3^2P=3^2-3^4+3^6-3^8+...+3^{98}-3^{100}$

$\Rightarrow P+3^2P=1-3^{100}$

$\Rightarrow 10P=1-3^{100}$

$\Rightarrow 1-10P=3^{100}=(3^{50})^2$ là số chính phương.

Ta có đpcm.

26 tháng 9 2021

127^2; 999^2; 33^4;17^10;52^51

a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9

Ta có :

02 = 0 

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8

b) Vì 1262 có chữ số tận cùng là 6

=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )

Ta có 10012 có chữ số tận cùng là 1

=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )

Ta có 112 và 113 đều có chữ số tận cùng là 1 

=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )

Ta có 1010 có chữ số tận cùng là 0

=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )

Ta có 5151 có chữ số tận cùng là 1

=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )

25 tháng 10 2023

\(B=n^2-6n+9\)

\(=n^2-2\cdot n\cdot3+3^2\)

\(=\left(n-3\right)^2\)

=>B là số chính phương

12 tháng 8 2015

Moon Light: Lớp 6 chưa học căn

15 tháng 6 2021

3P = 3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63

=> 3P - P = (3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63) - (1 + 3 + 3^2 + 3^3 + ... + 3^61 + 3^62)

=> 2P = -1 +3^63

=> P = -1 + 3^63/2

Có : 3^63 = (3^4)15 . 3^3 = 81^15 . 27 = ....1 . 27 = ....7

=> 3^63 -1 = ....6

Từ đó thì bạn cứ suy ra mấy bước nhỏ nữa là xong thôi

\(a;A=n\left(n-6\right)+9=n^2+6n+3^2=\left(n+3\right)^2\)

3 tháng 4 2018

Ta có:

f+1 = 1 + 3^1 + 3^2 + 3^3 + ... + 3^100

3(f+1) = 3 + 3^2 + 3^3+ 3^4 + ... + 3^101

3(f+1) = (1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^100) + (3^101 - 1)

3(f+1) = (f+1) + (3^101 - 1)

2(f+1) = 3^101 - 1

2f + 2 = 3^101 - 1

2f + 3 = 3^101

2f + 3 = (3^4)^25 . 3

2f + 3 = \(\overline{...1}^{25}\). 3

2f + 3 = \(\overline{..1}\). 3

2f+3 = \(\overline{...3}\)

Mà số chính phương không có tận cùng là chữ số 3 nên 2f+3 không phải là số chính phương

Hơi khó hiểu tí !