\(\frac{5}{4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

27 tháng 7 2017

Ta có:

\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)

Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)

Thế vào điều kiện đề bài ta có:

\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)

\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)

\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)

Ta cần chứng minh

\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)

\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)

\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh là đúng.

27 tháng 7 2017

Câu hỏi của Mẫn Đan - Toán lớp 9 - Học toán với OnlineMath

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

7 tháng 7 2019

a) \(\sqrt{\frac{1+\cos x}{1-\cos x}}-\sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sqrt{\left(1+\cos x\right)^2}-\sqrt{\left(1-\cos x\right)^2}}{\sqrt{\left(1-\cos x\right)\left(1+\cos x\right)}}\)

\(=\frac{1+\cos x-1+\cos x}{\sqrt{1-\cos^2x}}=\frac{2\cos x}{\sqrt{\sin^2x}}=\frac{2\cos x}{\sin x}=2\cot x\)

b) \(\frac{1}{\tan x+1}+\frac{1}{\cot x+1}=\frac{\tan x+1+\cot x+1}{\left(\tan x+1\right)\left(\cot x+1\right)}\)

\(=\frac{\tan x+\cot x+2}{\tan x+\cot x+\tan x.\cot x+1}=\frac{\tan x+\cot x+2}{\tan x+\cot x+2}=1\)

c) (ko bt có sai đề ko, làm mãi ko ra) 

d) \(\sin^21^0+\sin^22^0+\sin^23^0+...+\sin^289^0\)

\(=\left(\sin^21^0+\sin^289^0\right)+\left(\sin^22^0+\sin^288^0\right)+...+\sin^245^0\)

\(=\left[\left(\sin^21^0-\cos^289^0\right)+\left(\sin^289^0+\cos^289^0\right)\right]+\)

\(\left[\left(\sin^22^0-\cos^288^0\right)+\left(\sin^288^0+\cos^288^0\right)\right]+...+\sin^245^0\)

\(=\left(0+1\right)+\left(0+1\right)+...+\frac{\sqrt{2}}{2}=\frac{44+\sqrt{2}}{2}\)

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán