K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
Ta có:
$S=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})$

$=15(2+2^5+....+2^{97})\vdots 15$

18 tháng 11 2016

S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100

S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) +  ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )

S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) +  ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95

S = 62 + ... + 62 . 2 96

S = 62 ( 1 + ... + 2 96 )

Vì 62 chia hết cho 31

=> 62 ( 1 + ... + 2 96 ) chia hết cho 31

=> S chia hết cho 31

24 tháng 10 2019

minh dang can gap

28 tháng 12 2018

\(1+2+2^2+2^3+2^4+...+2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=31+...+2^{96}\cdot31\)

\(=31\left(1+...+2^{96}\right)\)(viết cái đề mak đang sai nói chi đến làm)

Tổng A có 100 số hạng

.  Nhóm 2 số hạng vào 1 nhóm thì vừa hết .

 Ta có :           A = (2 + 2^2) + (2^3 + 2^4) + .....+ (2^99 + 2^100)          

 A = (2 + 2^2) + 2^2(2 + 2^2) + ......2^98(2 + 2^2)      

     A = 31 + 2^2 . 31 + .....+ 2^98 . 31       

   A = 31(1 + 2^2 + ....+ 2^98)chia hết cho 31

26 tháng 9 2015

Bài 1 . Ta có 13^2014 là số lẻ

                   15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2

Bài 2 Ta có 121^2013 ko chia hết cho 5( có tận cùng là 1)

                 125^2014 chia hết cho 5( vì 125 chia hết cho 5)

=> 121^2013+125^2014 ko chia hết cho 5 

26 tháng 11 2016

Bài 1 . Ta có 13^2014 là số lẻ

                    15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2

Bài 2 Ta có 121^2013 ko chia hết cho 5﴾ có tận cùng là 1﴿

                 125^2014 chia hết cho 5﴾ vì 125 chia hết cho 5﴿ => 121^2013+125^2014 ko chia hết cho 5 

21 tháng 10 2017

M=2+22+23+24+.....+2100

=(2+22+23+24)+(25+26+27+28)+.....+(297+298+299+2100)

=2x(1+2+22+23)+25x(1+2+22+23)+.....+297x(1+2+22+23)

=2x15+25x15+....+297x15

Lúc A gồm tổng của 25 số, trong mỗi số đều chia hết cho 30.Vậy A Chia hết cho 30

21 tháng 10 2017

\(M=2+2^2+...+2^{100}\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(M=\left(2+2^2+2^3+2^4\right)+...+2^{96}.\left(2+2^2+2^3+2^4\right)\)

\(M=30+...+2^{96}.30\)

\(M=30.\left(1+...+2^{96}\right)⋮30\left(đpcm\right)\)