\(x^n-y^n⋮x^m-y^m\)thì \(n⋮m\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

1) Bài này có 2 cách giải

Cách 1:

để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)

ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)

trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:

\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)

Do đó sử dụng BĐT AM-GM ta có:

\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)

Cách 2:

Sử dụng BĐT AM-GM  dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)

Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)

tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)

Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được

\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)

               \(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

29 tháng 12 2019

Áp dụng bđt AM-GM ta có: 

\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)

\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)

\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)

Cộng từng vế các đẳng thức trên ta được:

\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)

\(\Rightarrow N\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

29 tháng 12 2019

 x, y, z \(\ge\)0 là đúng đấy

và bạn có thể giải bằng BĐT Cauchy đc ko

15 tháng 8 2019

a) x^3+y^3>0=>x-y>0

x-y=x^3+y^3>x^3-y^3=(x-y)(x^2+xy+y^2)

=>x-y>(x-y)(x^2+xy+y^2) Do x-y>0 => 1>x^2+xy+y^2 =>1>x^2+y^2 b) a^2+b^2+ab+bc+ca<0 =>2a^2+2b^2+2ab+2bc+2ca<0 =>a^2+b^2-c^2+(a+b+c)^2<0 Mà (a+b+c)^2>=0 =>a^2+b^2-c^2<0 <=>a^2+b^2<c^2
5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x