\(x^2+y^2-4x+2\)  luôn dương với mọi x,y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Phạm Hữu Nam chuyên Đại số ♏ (Hội Con 🐄)  Thử với x=y=1 thì nó đâu phải dương ??

20 tháng 9 2019

\(x^2+y^2-4x+2=\left(x^2-4x+4\right)+y^2-2\)

\(=\left(x-2\right)^2+y^2-2\ge-2?\)

5 tháng 10 2020

a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)

b) Ta có y - y2 - 1 

= -(y2 - y + 1)

= -(y2 - y + 1/4) - 3/4

= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)

5 tháng 10 2020

a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

19 tháng 6 2016

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

23 tháng 12 2018

\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)

\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)

23 tháng 12 2018

Bài 2 đề bn viết thiếu đấu + đó

Ta có M=x2+4xy+5y2-2y+3

=(x2+4xy+4y2)+(y2-2y+1)+2

=(x+2y)2 +(y-1)2+2

Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)

=> đpcm

16 tháng 8 2021

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

28 tháng 6 2019

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

18 tháng 9 2019

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

2 tháng 8 2017

ta có

B=(x^2-2x+1)+[(3y)^2-6y+1]+1

B=(x-1)^2+(3y-1)^2+1

Mả (x-1)^2+(3y_1)^2 luôn luôn >=0

Vậy B mìn =1khi và chỉ khi x=1 va y=1/3

2 tháng 8 2017

À không cần min bạn nhé. Dù sao cũng cảm ơn.

26 tháng 11 2018

A=x2-2x+2

A=(x2-2x+1)+1

A=(x-1)2+1

(x-1)2\(\ge\)0 với mọi x

=> (x-1)2+1 >0 hay A>0

Vậy A luôn dương với mọi x,y,z

B=x2+y2+z2+4x-2y-4z+10

B=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

B=(x+2)2+(y-1)2+(z-2)2+1

(x+2)2\(\ge\)0 với mọi x

(y-1)2\(\ge\)0 với mọi y

(z-2)2\(\ge\)0 với mọi z

=>(x+2)2+(y-1)2+(z-2)2+1>0 hay B>0

Vậy B luôn dương với mọi x,y,z

C=x2+y2+2x-4y+6

C=(x2+2x+1)+(y2-4y+4)+1

C=(x+1)2+(y-2)2+1

(x+1)2\(\ge\)0 với mọi x

(y-2)2\(\ge\)0 với mọi y

=>(x+1)2+(y-2)2+1>0 hay C>0

Vậy C luôn dương với mọi x,y,z

26 tháng 11 2018

a/ \(A=x^2-2x+2\\A=x^2-2x+1+1\\ A=\left(x-1\right)^2+1>0 \)

b/ \(B=x^2+y^2+z^2+4x-2y-4z+10\)

\(B=x^2+4x+4+y^2-2y+1+z^2-4z+4+1\)

\(B=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)

c/ \(C=x^2+y^2+2x-4y+6\)

\(C=x^2+2x+1+y^2-4y+4+1\)

\(C=\left(x+1\right)^2+\left(y-2\right)^2+1>0\)

1 tháng 10 2019

Em kiểm tra lại đề bài nhé vì:

\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)

\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)

\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0

=> Q luôn có gia trị âm với mọi x, y khác 0.