\(\sqrt{1+2+3+...+\left(n+1\right)+n+\left(n-1\right)+...+3+2+1}\)=n

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\\ =\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\\ =\sqrt{2.\left(n+1\right).n:2-n}\\ =\sqrt{n\left(n+1\right)-n}\\ =\sqrt{n^2+n-n}\\ =\sqrt{n^2}\\ =n\)

18 tháng 8 2017

Ta có :

\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)

=\(\sqrt{2\left(1+2+...+n-1\right)+n}\)

=\(\sqrt{\dfrac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)

Chúc Bạn Học Tốt ,Cô @Bùi Thị Vân kiểm tra giùm em với ạ

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

19 tháng 2 2016

Thiếu  điều  kiên n E N

19 tháng 2 2016

\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(=\sqrt{2\left[1+2+3+..+\left(n-1\right)+n\right]}=\sqrt{2\frac{n\left(n-1\right)}{2}+n}\)

\(=\sqrt{n\left(n-1\right)+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\left(đpcm\right)\)

26 tháng 3 2020

Đặt 

\(A_k=1+2+3+....+k=\frac{k\left(k+1\right)}{2}\)

\(A_{k-1}=1+2+3+....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\)

Ta có:

\(A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2}{2}-\frac{\left(k-1\right)^2k^2}{2}=\frac{k^2}{2}\left(k^2+2k+1-k^2+2k-1\right)=k^3\)

Khi đó:

\(1^3=A_1^2\)

\(2^3=A_2^2-A_1^2\)

\(...........\)

\(n^3=A_n^2-A_{n-1}^2\)

Khi đó:

\(1^3+2^3+3^3+...+n^3=A_n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

\(\Rightarrow\sqrt{1^3+2^3+......+n^3}=\frac{n\left(n+1\right)}{2}\)

=> ĐPCM

26 tháng 3 2020

Cách khác:

Ta sẽ đi chứng minh \(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với n=1 thì mệnh đề trên đúng

Giả sử mệnh đề trên đúng với n=k ta sẽ chứng minh mệnh đề đúng với n=k+1

Ta có:

\(A_k=1^3+2^3+3^3+.....+k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2\)

Ta cần chứng minh:

\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Thật vậy !

\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\)

\(=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)

\(=\left(k+1\right)^2\left(\frac{k^2}{4}+k+1\right)\)

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Theo nguyên lý quy nạp ta có điều phải chứng minh.