Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:
\(VT=\left(xy\right)^n=xy.xy.xy.....xy\)(có n số xy)
\(=x^ny^n=VP\)
Vậy \(\left(x.y\right)^n=x^ny^n\)
b, Ta có:
\(VT=\left(\dfrac{x}{y}\right)^n=\dfrac{x}{y}.\dfrac{x}{y}.\dfrac{x}{y}.....\dfrac{x}{y}\)(có n số \(\dfrac{x}{y}\))
\(=\dfrac{x.x.x.....x}{y.y.y.....y}=\dfrac{x^n}{y^n}=VP\)
Vậy \(\left(\dfrac{x}{y}\right)^n=\dfrac{x^n}{y^n}\)
Chúc bạn học tốt!!!
1. \(3^x+3^{x+2}=2430\)
\(3^x\left(1+3^2\right)=2430\)
\(3^x.10=2430\)
\(3^x=243\)
\(3^x=3^5\)
\(x=5\)
2. \(2^{x+3}-2^x=224\)
\(2^x\left(2^3-1\right)=224\)
\(2^x.7=224\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
\(1a,\) Ta có: \(\left(2x-6\right)^2\ge0\forall x\Rightarrow\left(2x-6\right)^2+36\ge36\forall x\)
\(\Rightarrow\frac{2016}{\left(2x-6\right)^2+63}\le\frac{2016}{63}=32\)
\(\Rightarrow\left|y+2015\right|+32\le32\)
\(\Rightarrow\left|y+2015\right|\le0\)
\(\Rightarrow\left|y+2015\right|=0\)
\(\Rightarrow y=-2015\)
\(\Rightarrow2x-6=0\Rightarrow x=3\)
Vậy \(x=3;y=-2015\)
b)
Ta có: \(b^2=ac.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}.\)
\(\Rightarrow\frac{a}{b}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)
\(\Rightarrow\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\left(đpcm\right).\)
Chúc bạn học tốt!
a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)
\(A=x\cdot\left(-1\right)\cdot x\)
\(A=-x^2\)
b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)
Xét :
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)
\(\frac{x}{8}=6\Leftrightarrow x=48\)
\(\frac{y}{12}=6\Leftrightarrow y=72\)
\(\frac{z}{15}=6\Leftrightarrow z=90\)
\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)
ta có
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)
ta lại có
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)
\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)
ta kết hợp (1) và (2)
\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)
theo tính chất dãy tỉ số = nhau
có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)
thay vào
Ta có: \(\left(xy\right)^n=\left(xy\right)\left(xy\right)...\left(xy\right)=\left(x.x...x\right)\left(y.y...y\right)=x^ny^n\)(với n thừa số xy, n thừa số x, n thừa số y) (đpcm)
\(\left(\frac{x}{y}\right)^n=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right)...\left(\frac{x}{y}\right)=\frac{x.x...x}{y.y...y}=\frac{x^n}{y^n}\)(với n thừa số \(\frac{x}{y}\), n thừa số x, n thừa số y) (đpcm)