Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với mọi \(x,y\in Q\), ta luôn luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) ; \(y\le\left|y\right|\) và \(-y\le\left|y\right|\)
Suy ra \(x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) Theo câu a ta có:
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)
\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
đpcm
Gải sử..
\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
Có \(\left|a-b\right|^2=\left(a-b\right)^2\)
\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)
\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)
Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng )
Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm )
\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)
\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? )
...
a, Vì hai vế đều ko âm nên ta đuợc :
\(\left|x+y\right|^2\)<=\(\left(\left|x\right|^2+\left|y\right|^2\right)\)
<=> (x+y)(x+y) <= \(\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)
<=> \(x^2+2xy+y^2\) <= \(x^2+2\left|x\right|\left|y\right|+y^2\)
<=> xy <= |xy| ( Luôn đúng với mọi x và y )
Vậy BĐT trên đúng. Dấu ' = ' xảy ra khi x, y cùng dấu
b, Áp dụng từ câu a , bạn suy ra nhé !
a) cả 2 vế không âm nên bình phương 2 vế ta được :
\(\left|x+y\right|^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right).\left(\left|x\right|+\left|y\right|\right)\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2.\left|x\right|\left|y\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) Điều này luôn đúng với mọi số x ; y .
Vậy bất đẳng thức đã cho đúng . Dầu " ="khí | xý | = xy <=> x ; y cùng dấu .
b) Áp dụng câu a) ta có : | x - y| + |y| \(\ge\) | (x-y) + y | = |x|
=> |x - y | \(\ge\)|x| + | y|
Đầu " = " xảy ra <=> (x-y) và y cùng dấu
a) |x| + |y| \(\ge\) |x+y|
Với mọi x,y : |x| \(\ge\) x ( Dấu "=" xảy ra khi x \(\ge\) 0 )
|y| \(\ge\) y ( Dấu "=" xảy ra khi y \(\ge\) 0 )
=> |x| + |y| \(\ge\) x+y (1)
Với mọi x,y : |x| > x ( Dấu "=" xảy ra khi x \(\le\) 0 )
|y| > y ( Dấu "=" xảy ra khi y \(\le\) 0 )
=> |x| + |y| = -(x+y) (2)
Từ (1) và (2) => |x| + |y| \(\ge\) |x+y|
Ta có:\(\left|a\right|,\left|b\right|\) \(\leq\) \(1\)
\(\implies\) \(\left(1-a\right).\left(1-b\right)\) \(\geq\) \(0\)
\(\implies\) \(1-b-a+ab\)\(\geq\) \(0\)
\(\implies\) \(1+ab\) \(\geq\) \(a+b\)
\(\implies\) \(\left|1+ab\right|\) \(\geq\) \(\left|a+b\right|\) \(\left(đpcm\right)\)
chỗ nào không hiểu hỏi tớ bài này hơi khó