Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
do 17 khong chia het cho 3 nen 17n khong chia het cho 3.xet 3 so tu nhien lien tiep:17n-1,17n,17n+1 luon co 1 so chia het cho 3 ma 17n khong chia het cho 3 nen17n+1 chia het cho 3 hoac 17n+2 chia het cho 3 =>(17n+1)(17n+2) chia het cho 3
Lời giải:
$n^3-13n=n^3-n-12n=n(n^2-1)-12n=n(n-1)(n+1)-12n$
Ta thấy:
$n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên trong 3 số có ít nhất 1 số chia hết cho 3.
$\Rightarrow n(n-1)(n+1)\vdots 3$.
$n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên trong 3 số có ít nhất 1 số chẵn.
$\Rightarrow n(n-1)(n+1)\vdots 2$
$\Rightarrow n(n-1)(n+1)\vdots 6$
Mà $12n\vdots 6$
$\Rightarrow n^3-13n=n(n-1)(n+1)-12n\vdots 6$
Ta có đpcm.